Week4 monday

Recap so far: In DFA, the only memory available is in the states. Automata can only "remember" finitely far in the past and finitely much information, because they can have only finitely many states. If a computation path of a DFA visits the same state more than once, the machine can't tell the difference between the first time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept (infinitely) many similar strings.

Definition A positive integer p is a pumping length of a language L over Σ means that, for each string $s \in \Sigma^{*}$, if $|s| \geq p$ and $s \in L$, then there are strings x, y, z such that

$$
s=x y z
$$

and

$$
|y|>0, \quad \text { for each } i \geq 0, x y^{i} z \in L, \quad \text { and } \quad|x y| \leq p
$$

Negation: A positive integer p is not a pumping length of a language L over Σ iff

$$
\exists s\left(|s| \geq p \wedge s \in L \wedge \forall x \forall y \forall z\left((s=x y z \wedge|y|>0 \wedge|x y| \leq p) \rightarrow \exists i\left(i \geq 0 \wedge x y^{i} z \notin L\right)\right)\right)
$$

Informally:
Restating Pumping Lemma: If L is a regular language, then it has a pumping length.
Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular. The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

- Consider an arbitrary positive integer p
- Prove that p is not a pumping length for L
- Conclude that L does not have any pumping length, and therefore it is not regular.

Example: $\Sigma=\{0,1\}, L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p :

Pick $s=$
Suppose $s=x y z$ with $|x y| \leq p$ and $|y|>0$.

Then when $i=$

$$
, x y^{i} z=
$$

Example: $\Sigma=\{0,1\}, L=\left\{w w^{\mathcal{R}} \mid w \in\{0,1\}^{*}\right\}$. Remember that the reverse of a string w is denoted $w^{\mathcal{R}}$ and means to write w in the opposite order, if $w=w_{1} \cdots w_{n}$ then $w^{\mathcal{R}}=w_{n} \cdots w_{1}$. Note: $\varepsilon^{\mathcal{R}}=\varepsilon$.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p :

Pick $s=$
Suppose $s=x y z$ with $|x y| \leq p$ and $|y|>0$.
\square

Then when $i=\quad, x y^{i} z=$

Example: $\Sigma=\{0,1\}, L=\left\{0^{j} 1^{k} \mid j \geq k \geq 0\right\}$.
Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p :

Pick $s=$
Suppose $s=x y z$ with $|x y| \leq p$ and $|y|>0$.

Then when $i=\quad, x y^{i} z=$

Example: $\Sigma=\{0,1\}, L=\left\{0^{n} 1^{m} 0^{n} \mid m, n \geq 0\right\}$.
Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p :

Pick $s=$
Suppose $s=x y z$ with $|x y| \leq p$ and $|y|>0$.
\square

Then when $i=\quad, x y^{i} z=$

Language	$s \in L$	$s \notin L$	Is the language regular or nonregular?
$\left\{a^{n} b^{n} \mid 0 \leq n \leq 5\right\}$			
$\left\{b^{n} a^{n} \mid n \geq 2\right\}$			
$\left\{a^{m} b^{n} \mid 0 \leq m \leq n\right\}$			
$\left\{a^{m} b^{n} \mid m \geq n+3, n \geq 0\right\}$			
$\left\{b^{m} a^{n} \mid m \geq 1, n \geq 3\right\}$			
$\left\{w \in\{a, b\}^{*} \mid w=w^{\mathcal{R}}\right\}$			
$\left\{w w^{\mathcal{R}} \mid w \in\{a, b\}^{*}\right\}$			

Week3 friday

Definition and Theorem: For an alphabet Σ, a language L over Σ is called regular exactly when L is recognized by some DFA, which happens exactly when L is recognized by some NFA, and happens exactly when L is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise concatenation, and Kleene star.

Prove or Disprove: There is some alphabet Σ for which there is some language recognized by an NFA but not by any DFA.

Prove or Disprove: There is some alphabet Σ for which there is some finite language not described by any regular expression over Σ.

Prove or Disprove: If a language is recognized by an NFA then the complement of this language is not recognized by any DFA.

Fix alphabet Σ. Is every language L over Σ regular?

Set	Cardinality
$\{0,1\}$	
$\{0,1\}^{*}$	
$\mathcal{P}(\{0,1\})$	
The set of all languages over $\{0,1\}$	
The set of all regular expressions over $\{0,1\}$	
The set of all regular languages over $\{0,1\}$	

Strategy: Find an invariant property that is true of all regular languages. When analyzing a given language, if the invariant is not true about it, then the language is not regular.

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a pumping length) where, if s is any string in A of length at least p, then s may be divided into three pieces, $s=x y z$ such that

- $|y|>0$
- for each $i \geq 0, x y^{i} z \in A$
- $|x y| \leq p$.

Proof illustration

True or False: A pumping length for $A=\{0,1\}^{*}$ is $p=5$.

