
formal-definition-of-automata

Day12

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,Σ,Γ, δ, q0, F ) where Q is the
finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε)

is the transition function, q0 ∈ Q is the start state, F ⊆ Q is the set of accept states.

For the PDA state diagrams below, Σ = {0, 1}.
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Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

q0start q1

q2 q3q4

ε, ε; $

0, ε; #

ε, ε; ε
1,#; ε

1, ε; ε
ε, $; ε

Γ = {☼, 1}

q0start q1

q2 q3 q4

q5 q6

ε, ε;☼

1, ε; 1

ε, ε; ε

ε, ε; ε

0, 1, ; ε

ε,☼; ε

1, ε; ε

0, ε; ε

ε, ε; ε

1, 1; ε

ε,☼; ε

{0i1j0k | i, j, k ≥ 0}

Note: alternate notation is to replace ; with → on arrow labels.
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Corollary: for each language L over Σ, if there is an NFA N with L(N) = L then there is a PDA M with
L(M) = L

Proof idea: Declare stack alphabet to be Γ = Σ and then don’t use stack at all.

Big picture: PDAs are motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Day14

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are nonregular.

Fact: There are countably many regular languages.

Fact: There are countably infinitely many context-free languages.

Consequence: Most languages are not context-free!

CC BY-NC-SA 2.0 Version March 25, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3) |vxy| ≤ p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to
them gives an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ( (x ∈ Z ∧ y ∈ Z) → xy ∈ Z )
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ( (A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A) )
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.
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Regular sets are not the end of the story

• Many nice / simple / important sets are not regular

• Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

• We know actual computers are more powerful than this model...

The next model of computation. Idea: allow some memory of unbounded size. How?

• To generalize regular expressions: context-free grammars

• To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0n1n | n ≥ 0}?
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q0start q1

q2q3

ε, ε; $

0, ε; 0

1, 0; ε

1, 0; ε
ε, $; ε

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject
the input.

Trace a computation of this PDA on the input string 01.

Extra practice: Trace the computations of this PDA on the input string 011.
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A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if
any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

q0start q1

q2q3

ε, ε; $

0, ε; 0

1, 0; ε

1, 0; ε
ε, $; ε
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We are ready to introduce a formal model that will capture a notion of general purpose computation.

• Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.

• Different from NFA, PDA: machine is deterministic.

• Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

• Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

• Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

The computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}
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q0start q1

qacc qrej

□;□, R

0;□, R

0;□, R

□;□, R

0;□, R
□;□, R

0;□, R
□;□, R

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.
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Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

q0start qacc

□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

qrejstart qacc

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description
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q0start qacc
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

q0start qacc

1;□, R
0;□, R
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description
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Sipser Figure 3.10

Conventions in state diagram of TM: b → R label means b → b, R and all arrows missing from diagram
represent transitions with output (qreject, , R)

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

Computation on input string 01#01

q1 ↓
0 1 # 0 1
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High-level description of this machine is

Recall: High-level descriptions of Turing machine al-
gorithms are written as indented text within quo-
tation marks. Stages of the algorithm are typically
numbered consecutively. The first line specifies the
input to the machine, which must be a string.

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1
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A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

q0start qacc

□;□, R

qrejstart qacc

Decider? Yes / No Decider? Yes / No

q0start qacc
□;□, R

q0start qacc

0;□, R
1;□, R
□;□, R

Decider? Yes / No Decider? Yes / No
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ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.
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True or False: The class of Turing-decidable languages is closed under complementation.

Using formal definition:

Using high-level description:

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.
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Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.
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Dovetailing: interleaving progress on multiple computations by limiting the number of steps each compu-
tation makes in each round.
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Claim: If two languages (over a fixed alphabet Σ) are Turing-decidable, then their union is as well.

Proof:
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Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof:
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Review: The language recognized by the NFA over {a, b} with state diagram

q0start

q r s

n d

ε

ε

a

b

b

a, b

a, b

a, b
is:

So far, we know:

• The collection of languages that are each recognizable by a DFA is closed under complementation.

Could we do the same construction with NFA?

• The collection of languages that are each recognizable by a NFA is closed under union.

Could we do the same construction with DFA?
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Happily, though, an analogous claim is true!

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∪A2.
Theorem 1.25 in Sipser, page 45

Proof idea:

Formal construction:

Example: When A1 = {w | w has an a and ends in b} and A2 = {w | w is of even length}.

(q, n)start

(q, d)

(r, d)

(r, n)

(s, n)

(s, d)

b

a

b

a

a
b

a

b

a
b

a

b
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Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∩A2.
Footnote to Sipser Theorem 1.25, page 46

Proof idea:

Formal construction:

Day8

So far we have that:

• If there is a DFA recognizing a language, there is a DFA recognizing its complement.

• If there are NFA recognizing two languages, there is a NFA recognizing their union.

• If there are DFA recognizing two languages, there is a DFA recognizing their union.

• If there are DFA recognizing two languages, there is a DFA recognizing their intersection.

Our goals for today are (1) prove similar results about other set operations, (2) prove that NFA and DFA
are equally expressive, and therefore (3) define an important class of languages.
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Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ◦ A2.

Proof idea: Allow computation to move betweenN1 andN2 “spontaneously” when reach an accepting state
of N1, guessing that we’ve reached the point where the two parts of the string in the set-wise concatenation
are glued together.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅.
Construct N = (Q,Σ, δ, q0, F ) where

• Q =

• q0 =

• F =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and a ∈ Σε:

δ((q, a)) =


δ1((q, a)) if q ∈ Q1 and q /∈ F1

δ1((q, a)) if q ∈ F1 and a ∈ Σ

δ1((q, a)) ∪ {q2} if q ∈ F1 and a = ε

δ2((q, a)) if q ∈ Q2

Proof of correctness would prove that L(N) = A1 ◦ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string can be written as the
result of concatenating two strings, the first in A1 and the second in A2; then, taking an arbitrary string in
A1 ◦ A2 and proving that it is accepted by N . Details left for extra practice.

Application: A state diagram for a NFA over Σ = {a, b} that recognizes L(a∗b):
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Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A, then there
is another NFA, let’s call it N ′, such that L(N ′) = A∗.

Proof idea: Add a fresh start state, which is an accept state. Add spontaneous moves from each (old)
accept state to the old start state.

Formal construction: Let N = (Q,Σ, δ, q1, F ) and assume q0 /∈ Q. Construct N ′ = (Q′,Σ, δ′, q0, F
′)

where

• Q′ = Q ∪ {q0}

• F ′ = F ∪ {q0}

• δ′ : Q′ × Σε → P(Q′) is defined by, for q ∈ Q′ and a ∈ Σε:

δ′((q, a)) =



δ((q, a)) if q ∈ Q and q /∈ F

δ((q, a)) if q ∈ F and a ∈ Σ

δ((q, a)) ∪ {q1} if q ∈ F and a = ε

{q1} if q = q0 and a = ε

∅ if q = q0 and a ∈ Σ

Proof of correctness would prove that L(N ′) = A∗ by considering an arbitrary string accepted by N ′, tracing
an accepting computation of N ′ on it, and using that trace to prove the string can be written as the result
of concatenating some number of strings, each of which is in A; then, taking an arbitrary string in A∗ and
proving that it is accepted by N ′. Details left for extra practice.

Application: A state diagram for a NFA over Σ = {a, b} that recognizes L((a∗b)∗):
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Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A then there
is a DFA M such that L(M) = A.

Proof idea: States in M are “macro-states” – collections of states from N – that represent the set of
possible states a computation of N might be in.

Formal construction: Let N = (Q,Σ, δ, q0, F ). Define

M = ( P(Q),Σ, δ′, q′, {X ⊆ Q | X ∩ F ̸= ∅} )

where q′ = {q ∈ Q | q = q0 or is accessible from q0 by spontaneous moves in N} and

δ′( (X, x) ) = {q ∈ Q | q ∈ δ( (r, x) ) for some r ∈ X or is accessible from such an r by spontaneous moves in N}

Consider the state diagram of an NFA over {a, b}. Use the “macro-state” construction to find an equivalent
DFA.

q0start q1 q2

a, b

a

a, b

b

Consider the state diagram of an NFA over {0, 1}. Use the “macro-state” construction to find an equivalent
DFA.

q0start

q1

q2

ε

ε

0

1

Note: We can often prune the DFAs that result from the “macro-state” constructions to get an equivalent
DFA with fewer states (e.g. only the “macro-states” reachable from the start state).
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The class of regular languages

Fix an alphabet Σ. For each language L over Σ:

There is a DFA over Σ that recognizes L ∃M (M is a DFA and L(M) = A)
if and only if

There is a NFA over Σ that recognizes L ∃N (N is a NFA and L(N) = A)
if and only if

There is a regular expression over Σ that describes L ∃R (R is a regular expression and L(R) = A)

A language is called regular when any (hence all) of the above three conditions are met.

We already proved that DFAs and NFAs are equally expressive. It remains to prove that regular expressions
are too.

Part 1: Suppose A is a language over an alphabet Σ. If there is a regular expression R such that L(R) = A,
then there is a NFA, let’s call it N , such that L(N) = A.

Structural induction: Regular expression is built from basis regular expressions using inductive steps
(union, concatenation, Kleene star symbols). Use constructions to mirror these in NFAs.

Application: A state diagram for a NFA over {a, b} that recognizes L(a∗(ab)∗):

Part 2: Suppose A is a language over an alphabet Σ. If there is a DFA M such that L(M) = A, then there
is a regular expression, let’s call it R, such that L(R) = A.

Proof idea: Trace all possible paths from start state to accept state. Express labels of these paths as
regular expressions, and union them all.

1. Add new start state with ε arrow to old start state.

2. Add new accept state with ε arrow from old accept states. Make old accept states non-accept.

3. Remove one (of the old) states at a time: modify regular expressions on arrows that went through
removed state to restore language recognized by machine.
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Application: Find a regular expression describing the language recognized by the DFA with state diagram

q0start

q1

q2

q3

a

b

a

b

b

a

a, b
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Day4

**This definition was in the pre-class reading** A finite automaton (FA) is specified by M = (Q,Σ, δ, q0, F ).
This 5-tuple is called the formal definition of the FA. The FA can also be represented by its state diagram:
with nodes for the state, labelled edges specifying the transition function, and decorations on nodes denoting
the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the automaton based on the current state of
the machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the automaton, F ⊆ Q. These states
are used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The finite automaton M accepts the given input string exactly when the computation of M
on the input string ends in an accept state. M rejects the given input string exactly when the
computation of M on the input string ends in a nonaccept state, that is, a state that is not in
F .

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

What is finite about all finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The length of each computation of the machine

□ The number of strings that are accepted by the machine
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q0start

q1

q2

q3

a

a

b

b
b

a

a, b

The formal definition of this FA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the FA or rejected by the FA.

Why are these the only two options?

The language recognized by this automaton is
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q0start q1 q2
b

a

a

b a, b

The language recognized by this automaton is

q0start

q1 q2

q3

a

b

b

a a, b

a, b

The language recognized by this automaton is
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Day5

Review: Formal definition of DFA: M = (Q,Σ, δ, q0, F )

• Finite set of states Q

• Alphabet Σ

• Transition function δ

• Start state q0

• Accept (final) states F

Quick check: In the state diagram of M , how many outgoing arrows are there from each state?

Note: We’ll see a new kind of finite automaton. It will be helpful to distinguish it from the machines we’ve
been talking about so we’ll use Deterministic Finite Automaton (DFA) to refer to the machines from
Section 1.1.

M = ({q0, q1, q2}, {a, b}, δ, q0, {q0}) where δ is (rows labelled by states and columns labelled by symbols):

δ a b
q0 q1 q1
q1 q2 q2
q2 q0 q0

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M :

A regular expression describing L(M) is

A state diagram for a finite automaton recognizing

{w | w is a string over {a, b} whose length is not a multiple of 3}

Extra example: Let n be an arbitrary positive integer. What is a formal definition for a finite automaton
recognizing

{w | w is a string over {0, 1} whose length is not a multiple of n}?
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Consider the alphabet Σ1 = {0, 1}.

A state diagram for a finite automaton that recognizes {w | w contains at most two 1’s} is

A state diagram for a finite automaton that recognizes {w | w contains more than two 1’s} is

Strategy: Add “labels” for states in the state diagram, e.g. “have not seen any of desired pattern yet” or
“sink state”. Then, we can use the analysis of the roles of the states in the state diagram to work towards
a description of the language recognized by the finite automaton.

CC BY-NC-SA 2.0 Version March 25, 2025 (34)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Or: decompose the language to a simpler one that we already know how to recognize with a DFA or NFA.

Textbook Exercise 1.14: Suppose A is a language over an alphabet Σ. If there is a DFA M such that
L(M) = A then there is another DFA, let’s call it M ′, such that L(M ′) = A, the complement of A, defined
as {w ∈ Σ∗ | w /∈ A}.

Proof idea:

A useful bit of terminology: the iterated transition function of a finite automaton M = (Q,Σ, δ, q0, F )
is defined recursively by

δ∗( (q, w) ) =


q if q ∈ Q,w = ε

δ( (q, a) ) if q ∈ Q, w = a ∈ Σ

δ( (δ∗( (q, u) ), a) ) if q ∈ Q, w = ua where u ∈ Σ∗ and a ∈ Σ

Using this terminology, M accepts a string w over Σ if and only if δ∗( (q0, w) ) ∈ F .

Proof:
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Day6

Nondeterministic finite automaton (Sipser Page 53) Given as M = (Q,Σ, δ, q0, F )

Finite set of states Q Can be labelled by any collection of distinct names. Default: q0, q1, . . .
Alphabet Σ Each input to the automaton is a string over Σ.
Arrow labels Σε Σε = Σ ∪ {ε}.

Arrows in the state diagram are labelled either by symbols from Σ or by ε
Transition function δ δ : Q× Σε → P(Q) gives the set of possible next states for a transition

from the current state upon reading a symbol or spontaneously moving.
Start state q0 Element of Q. Each computation of the machine starts at the start state.
Accept (final) states F F ⊆ Q.

M accepts the input string w ∈ Σ∗ if and only if there is a computation of M on w that processes the
whole string and ends in an accept state.

The formal definition of the NFA over {0, 1} given by this state diagram is:

q0start q1

0, 1

1

The language over {0, 1} recognized by this NFA is:

Practice: Change the transition function to get a different NFA which accepts the empty string (and
potentially other strings too).
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The state diagram of an NFA over {a, b} is:

q0start

n d

q r s
ε

ε

a

b

b

a a, b

a, b

a, b

The formal definition of this NFA is:
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Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ∪ A2.

Proof idea: Use nondeterminism to choose which of N1, N2 to run.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅
and that q0 /∈ Q1 ∪Q2. Construct N = (Q,Σ, δ, q0, F1 ∪ F2) where

• Q =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and x ∈ Σε:

Proof of correctness would prove that L(N) = A1 ∪ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string is in at least one of
A1, A2; then, taking an arbitrary string in A1 ∪ A2 and proving that it is accepted by N . Details left for
extra practice.
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