
find-example-languages

Week8 monday

Acceptance problem
for Turing machines ATM {⟨M,w⟩ | M is a Turing machine that accepts input string w}
Language emptiness testing
for Turing machines ETM {⟨M⟩ | M is a Turing machine and L(M) = ∅}
Language equality testing
for Turing machines EQTM {⟨M1,M2⟩ | M1 and M2 are Turing machines and L(M1) = L(M2)}

M1

M2

M3

Example strings in ATM

Example strings in ETM

Example strings in EQTM

CC BY-NC-SA 2.0 Version March 29, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem: ATM is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine RATM such that L(RATM) = ATM .

Define RATM = “

Proof of correctness:

We will show that ATM is undecidable. First, let’s explore what that means.

CC BY-NC-SA 2.0 Version March 29, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

• The set of all Turing machines is countably infinite.

• Each recognizable language has at least one Turing machine that recognizes it (by definition), so there
can be no more Turing-recognizable languages than there are Turing machines.

• Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

• Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(Σ∗) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: ATM is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides ATM . We call this
presumed machine MATM .

By assumption, for every Turing machine M and every string w

• If w ∈ L(M), then the computation of MATM on ⟨M,w⟩

• If w /∈ L(M), then the computation of MATM on ⟨M,w⟩

Define a new Turing machine using the high-level description:

D =“ On input ⟨M⟩, where M is a Turing machine:

1. Run MATM on ⟨M, ⟨M⟩⟩.
2. If MATM accepts, reject; if MATM rejects, accept.”

CC BY-NC-SA 2.0 Version March 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on ⟨D⟩?

CC BY-NC-SA 2.0 Version March 29, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

CC BY-NC-SA 2.0 Version March 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 monday

These definitions are on pages 101-102.

Term Typical symbol Meaning
or Notation

Context-free grammar (CFG) G G = (V,Σ, R, S)
The set of variables V Finite set of symbols that represent phases in pro-

duction pattern
The set of terminals Σ Alphabet of symbols of strings generated by CFG

V ∩ Σ = ∅
The set of rules R Each rule is A → u with A ∈ V and u ∈ (V ∪ Σ)∗

The start variable S Usually on left-hand-side of first/ topmost rule

Derivation S ⇒ · · · ⇒ w Sequence of substitutions in a CFG (also written
S ⇒∗ w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the
context-free grammar G

L(G) The set of strings for which there is a derivation in
G. Symbolically: {w ∈ Σ∗ | S ⇒∗ w} i.e.

{w ∈ Σ∗ | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S → 0S

S → 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version March 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S → 0S | 1S | ε

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S → T1T1T1T

T → 0T | 1T | ε

In L(G3) . . .

Not in L(G3) . . .

CC BY-NC-SA 2.0 Version March 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G4 = ({A,B}, {0, 1}, R,A) with rules

A → 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

CC BY-NC-SA 2.0 Version March 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {anbn | n ≥ 0}

Sample derivation:

CC BY-NC-SA 2.0 Version March 29, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 wednesday

Warmup: Design a CFG to generate the language {aibj | j ≥ i ≥ 0}

Sample derivation:

Design a PDA to recognize the language {aibj | j ≥ i ≥ 0}

CC BY-NC-SA 2.0 Version March 29, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version March 29, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version March 29, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version March 29, 2024 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably inifnitely many context-free languages.

Consequence: Most languages are not context-free!

Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If
A is a context-free language, there there is a number p where, if s is any string in A of length at least p,
then s may be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3)
|vxy| ≤ p. We will not go into the details of the proof or application of Pumping Lemma for CFLs this
quarter.

CC BY-NC-SA 2.0 Version March 29, 2024 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week5 friday

Week4 monday

Recap so far: In DFA, the only memory available is in the states. Automata can only “remember” finitely far
in the past and finitely much information, because they can have only finitely many states. If a computation
path of a DFA visits the same state more than once, the machine can’t tell the difference between the first
time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept
(infinitely) many similar strings.

Definition A positive integer p is a pumping length of a language L over Σ means that, for each string
s ∈ Σ∗, if |s| ≥ p and s ∈ L, then there are strings x, y, z such that

s = xyz

and
|y| > 0, for each i ≥ 0, xyiz ∈ L, and |xy| ≤ p.

Negation: A positive integer p is not a pumping length of a language L over Σ iff

∃s
(
|s| ≥ p ∧ s ∈ L ∧ ∀x∀y∀z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p) → ∃i(i ≥ 0 ∧ xyiz /∈ L)

))
Informally:

Restating Pumping Lemma: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

• Consider an arbitrary positive integer p

• Prove that p is not a pumping length for L

• Conclude that L does not have any pumping length, and therefore it is not regular.

CC BY-NC-SA 2.0 Version March 29, 2024 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {0n1n | n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version March 29, 2024 (16)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Σ = {0, 1}, L = {wwR | w ∈ {0, 1}∗}. Remember that the reverse of a string w is denoted wR

and means to write w in the opposite order, if w = w1 · · ·wn then wR = wn · · ·w1. Note: ε
R = ε.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0j1k | j ≥ k ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0n1m0n | m,n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

CC BY-NC-SA 2.0 Version March 29, 2024 (17)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Extra practice:

Language s ∈ L s /∈ L Is the language regular or nonregular?

{anbn | 0 ≤ n ≤ 5}

{bnan | n ≥ 2}

{ambn | 0 ≤ m ≤ n}

{ambn | m ≥ n+ 3, n ≥ 0}

{bman | m ≥ 1, n ≥ 3}

{w ∈ {a, b}∗ | w = wR}

{wwR | w ∈ {a, b}∗}

Week4 friday

Draw the state diagram and give the formal definition of a PDA with Σ = Γ.

Draw the state diagram and give the formal definition of a PDA with Σ ∩ Γ = ∅.

CC BY-NC-SA 2.0 Version March 29, 2024 (18)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For the PDA state diagrams below, Σ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

Γ = {@, 1}

{0i1j0k | i, j, k ≥ 0}

Note: alternate notation is to replace ; with →

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

CC BY-NC-SA 2.0 Version March 29, 2024 (19)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 monday

We are ready to introduce a formal model that will capture a notion of general purpose computation.

• Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.

• Different from NFA, PDA: machine is deterministic.

• Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

• Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

• Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

The computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version March 29, 2024 (20)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

CC BY-NC-SA 2.0 Version March 29, 2024 (21)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version March 29, 2024 (22)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version March 29, 2024 (23)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 wednesday

Sipser Figure 3.10

Conventions in state diagram of TM: b → R label means b → b, R and all arrows missing from diagram
represent transitions with output (qreject, , R)

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

Computation on input string 01#01

q1 ↓
0 1 # 0 1

CC BY-NC-SA 2.0 Version March 29, 2024 (24)

https://creativecommons.org/licenses/by-nc-sa/2.0/

High-level description of this machine is

Recall: High-level descriptions of Turing machine al-
gorithms are written as indented text within quo-
tation marks. Stages of the algorithm are typically
numbered consecutively. The first line specifies the
input to the machine, which must be a string.

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1

CC BY-NC-SA 2.0 Version March 29, 2024 (25)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

Decider? Yes / No Decider? Yes / No

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version March 29, 2024 (26)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week6 friday

ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

CC BY-NC-SA 2.0 Version March 29, 2024 (27)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: The class of Turing-decidable languages is closed under complementation.

Using formal definition:

Using high-level description:

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version March 29, 2024 (28)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

CC BY-NC-SA 2.0 Version March 29, 2024 (29)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-decidable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version March 29, 2024 (30)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Proof:

Week7 wednesday

The Church-Turing thesis posits that each algorithm can be implemented by some Turing
machine.

Describing algorithms (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state. This is the low-level programming view
that models the logic computation flow in a processor.

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.
This level describes memory management and implementing data access with data structures.

– Mention the tape or its contents (e.g. “Scan the tape from left to right until a blank is seen.”)

– Mention the tape head (e.g. “Return the tape head to the left end of the tape.”)

• High-level description of algorithm executed by Turing machine: description of algorithm (precise
sequence of instructions), without implementation details of machine. High-level descriptions of Turing
machine algorithms are written as indented text within quotation marks. Stages of the algorithm are
typically numbered consecutively. The first line specifies the input to the machine, which must be a
string.

– Use other Turing machines as subroutines (e.g. “Run M on w”)

– Build new machines from existing machines using previously shown results (e.g. “Given NFA A
construct an NFA B such that L(B) = L(A)”)

– Use previously shown conversions and constructions (e.g. “Convert regular expression R to an
NFA N”)

Formatted inputs to Turing machine algorithms

The input to a Turing machine is always a string. The format of the input to a Turing machine can be
checked to interpret this string as representing structured data (like a csv file, the formal definition of a
DFA, another Turing machine, etc.)

This string may be the encoding of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are algorithms (Turing machines) that can be called as subroutines to decode the string
representations of common objects and interact with these objects as intended (data structures). These
algorithms are able to “type-check” and string representations for different data structures are unique.

CC BY-NC-SA 2.0 Version March 29, 2024 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w ∈ L(M)}
={⟨M,w⟩ | M is a DFA, w is a string, w ∈ L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ∅}
={⟨G⟩ | G is a CFG, L(G) = ∅}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={⟨M⟩ | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version March 29, 2024 (32)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 friday

Some classes of computational problems will help us understand the differences between the machine models
we’ve been studying. (Sipser Section 4.1)

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

CC BY-NC-SA 2.0 Version March 29, 2024 (33)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M1 = “On input ⟨M,w⟩, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type. If not, reject.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulations ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is M1 a decider?

Alternate description: Sometimes omit step 0 from listing and do implicit type check.

Synonyms: “Simulate”, “run”, “call”.

CC BY-NC-SA 2.0 Version March 29, 2024 (34)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True / False: AREX = ANFA = ADFA

True / False: AREX ∩ ANFA = ∅, AREX ∩ ADFA = ∅, ADFA ∩ ANFA = ∅

A Turing machine that decides ANFA is:

A Turing machine that decides AREX is:

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}. True/False: A Turing machine that decides EDFA is

M2 =“On input ⟨M⟩ where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the alphabet of M (ordered in string order).

3. Run M on input si.

4. If M accepts, . If M rejects, increment i and keep going.”

Choose the correct option to help fill in the blank so that M2 recognizes EDFA

A. accepts

B. rejects

C. loop for ever

D. We can’t fill in the blank in any way to make this work

CC BY-NC-SA 2.0 Version March 29, 2024 (35)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M3 = “ On input ⟨M⟩ where M is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get marked:

3. Loop over the states of M .

4. Mark any unmarked state that has an incoming edge from a marked state.

5. If no accept state of A is marked, ; otherwise, ”.

To build a Turing machine that decides EQDFA, notice that

L1 = L2 iff ((L1 ∩ L2) ∪ (L2 ∩ L1)) = ∅

There are no elements that are in one set and not the other

MEQDFA =

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

Week3 friday

Definition and Theorem: For an alphabet Σ, a language L over Σ is called regular exactly when L is
recognized by some DFA, which happens exactly when L is recognized by some NFA, and happens exactly
when L is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise
concatenation, and Kleene star.

Prove or Disprove: There is some alphabet Σ for which there is some language recognized by an NFA
but not by any DFA.

Prove or Disprove: There is some alphabet Σ for which there is some finite language not described by
any regular expression over Σ.

Prove or Disprove: If a language is recognized by an NFA then the complement of this language is not
recognized by any DFA.

CC BY-NC-SA 2.0 Version March 29, 2024 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix alphabet Σ. Is every language L over Σ regular?

Set Cardinality

{0, 1}

{0, 1}∗

P({0, 1})

The set of all languages over {0, 1}

The set of all regular expressions over {0, 1}

The set of all regular languages over {0, 1}

Strategy: Find an invariant property that is true of all regular languages. When analyzing a given
language, if the invariant is not true about it, then the language is not regular.

CC BY-NC-SA 2.0 Version March 29, 2024 (37)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a pumping
length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz
such that

• |y| > 0

• for each i ≥ 0, xyiz ∈ A

• |xy| ≤ p.

Proof illustration

True or False: A pumping length for A = {0, 1}∗ is p = 5.

CC BY-NC-SA 2.0 Version March 29, 2024 (38)

https://creativecommons.org/licenses/by-nc-sa/2.0/

