Week8 monday

Example strings in $A_{T M}$

Example strings in $E_{T M}$

Example strings in $E Q_{T M}$

Theorem: $A_{T M}$ is Turing-recognizable.
Strategy: To prove this theorem, we need to define a Turing machine $R_{A T M}$ such that $L\left(R_{A T M}\right)=A_{T M}$.
Define $R_{A T M}="$

Proof of correctness:

We will show that $A_{T M}$ is undecidable. First, let's explore what that means.

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?
How would we even find such a computational problem?
Counting arguments for the existence of an undecidable language:

- The set of all Turing machines is countably infinite.
- Each recognizable language has at least one Turing machine that recognizes it (by definition), so there can be no more Turing-recognizable languages than there are Turing machines.
- Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are countably infinitely many Turing-recognizable languages.
- Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because $\mathcal{P}\left(\Sigma^{*}\right)$ is uncountable), there are uncountably many unrecognizable languages and there are uncountably many undecidable languages.

Thus, there's at least one undecidable language!

What's a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.
Key idea: proof by contradiction relying on self-referential disagreement.
Theorem: $A_{T M}$ is not Turing-decidable.
Proof: Suppose towards a contradiction that there is a Turing machine that decides $A_{T M}$. We call this presumed machine $M_{A T M}$.

By assumption, for every Turing machine M and every string w

- If $w \in L(M)$, then the computation of $M_{A T M}$ on $\langle M, w\rangle$ \square
- If $w \notin L(M)$, then the computation of $M_{A T M}$ on $\langle M, w\rangle$ \qquad

Define a new Turing machine using the high-level description:
$D=$ " On input $\langle M\rangle$, where M is a Turing machine:

1. Run $M_{A T M}$ on $\langle M,\langle M\rangle\rangle$.
2. If $M_{A T M}$ accepts, reject; if $M_{A T M}$ rejects, accept."

Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on $\langle D\rangle$?

Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as $\Sigma^{*} \backslash L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, X^{c}, or an overline, \bar{X}.

