Week8 monday

Acceptance problem
for Turing machines \(A_{TM}\) \(\{ \langle M,w \rangle \mid \text{$M$ is a Turing machine that accepts input string $w$}\}\)
Language emptiness testing
for Turing machines \(E_{TM}\) \(\{ \langle M \rangle \mid \text{$M$ is a Turing machine and $L(M) = \emptyset$\}}\)
Language equality testing
for Turing machines \(EQ_{TM}\) \(\{ \langle M_1, M_2 \rangle \mid \text{$M_1$ and $M_2$ are Turing machines and $L(M_1) =L(M_2)$\}}\)
\(M_1\) \(M_2\)

Example strings in \(A_{TM}\)

Example strings in \(E_{TM}\)

Example strings in \(EQ_{TM}\)

Theorem: \(A_{TM}\) is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine \(R_{ATM}\) such that \(L(R_{ATM}) = A_{TM}\).

Define \(R_{ATM} =\)

Proof of correctness:

We will show that \(A_{TM}\) is undecidable. First, let’s explore what that means.

To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

Since there are uncountably many languages (because \(\mathcal{P}(\Sigma^*)\) is uncountable), there are uncountably many unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: \(A_{TM}\) is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides \(A_{TM}\). We call this presumed machine \(M_{ATM}\).

By assumption, for every Turing machine \(M\) and every string \(w\)

Define a new Turing machine using the high-level description:

\(D =\)“ On input \(\langle M \rangle\), where \(M\) is a Turing machine:

Is \(D\) a Turing machine?

Is \(D\) a decider?

What is the result of the computation of \(D\) on \(\langle D \rangle\)?

Summarizing:

Recall definition: A language \(L\) over an alphabet \(\Sigma\) is called co-recognizable if its complement, defined as \(\Sigma^* \setminus L = \{ x \in \Sigma^* \mid x \notin L \}\), is Turing-recognizable.

and Recall Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement are Turing-recognizable.