
define-decision-problem

Week7 wednesday

The Church-Turing thesis posits that each algorithm can be implemented by some Turing
machine.

Describing algorithms (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state. This is the low-level programming view
that models the logic computation flow in a processor.

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.
This level describes memory management and implementing data access with data structures.

– Mention the tape or its contents (e.g. “Scan the tape from left to right until a blank is seen.”)

– Mention the tape head (e.g. “Return the tape head to the left end of the tape.”)

• High-level description of algorithm executed by Turing machine: description of algorithm (precise
sequence of instructions), without implementation details of machine. High-level descriptions of Turing
machine algorithms are written as indented text within quotation marks. Stages of the algorithm are
typically numbered consecutively. The first line specifies the input to the machine, which must be a
string.

– Use other Turing machines as subroutines (e.g. “Run M on w”)

– Build new machines from existing machines using previously shown results (e.g. “Given NFA A
construct an NFA B such that L(B) = L(A)”)

– Use previously shown conversions and constructions (e.g. “Convert regular expression R to an
NFA N”)

Formatted inputs to Turing machine algorithms

The input to a Turing machine is always a string. The format of the input to a Turing machine can be
checked to interpret this string as representing structured data (like a csv file, the formal definition of a
DFA, another Turing machine, etc.)

This string may be the encoding of some object or list of objects.

Notation: ⟨O⟩ is the string that encodes the object O. ⟨O1, . . . , On⟩ is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are algorithms (Turing machines) that can be called as subroutines to decode the string
representations of common objects and interact with these objects as intended (data structures). These
algorithms are able to “type-check” and string representations for different data structures are unique.

CC BY-NC-SA 2.0 Version March 29, 2024 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

A computational problem is decidable iff language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w ∈ L(M)}
={⟨M,w⟩ | M is a DFA, w is a string, w ∈ L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ∅}
={⟨G⟩ | G is a CFG, L(G) = ∅}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={⟨M⟩ | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version March 29, 2024 (2)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Week7 friday

Some classes of computational problems will help us understand the differences between the machine models
we’ve been studying. (Sipser Section 4.1)

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

CC BY-NC-SA 2.0 Version March 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M1 = “On input ⟨M,w⟩, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type. If not, reject.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulations ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is M1 a decider?

Alternate description: Sometimes omit step 0 from listing and do implicit type check.

Synonyms: “Simulate”, “run”, “call”.

CC BY-NC-SA 2.0 Version March 29, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True / False: AREX = ANFA = ADFA

True / False: AREX ∩ ANFA = ∅, AREX ∩ ADFA = ∅, ADFA ∩ ANFA = ∅

A Turing machine that decides ANFA is:

A Turing machine that decides AREX is:

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}. True/False: A Turing machine that decides EDFA is

M2 =“On input ⟨M⟩ where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the alphabet of M (ordered in string order).

3. Run M on input si.

4. If M accepts, . If M rejects, increment i and keep going.”

Choose the correct option to help fill in the blank so that M2 recognizes EDFA

A. accepts

B. rejects

C. loop for ever

D. We can’t fill in the blank in any way to make this work

CC BY-NC-SA 2.0 Version March 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

M3 = “ On input ⟨M⟩ where M is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get marked:

3. Loop over the states of M .

4. Mark any unmarked state that has an incoming edge from a marked state.

5. If no accept state of A is marked, ; otherwise, ”.

To build a Turing machine that decides EQDFA, notice that

L1 = L2 iff ((L1 ∩ L2) ∪ (L2 ∩ L1)) = ∅

There are no elements that are in one set and not the other

MEQDFA =

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

CC BY-NC-SA 2.0 Version March 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week1 monday

The CSE 105 vocabulary and notation build on discrete math and introduction to proofs classes. Some of
the conventions may be a bit different from what you saw before so we’ll draw your attention to them.

For consistency, we will use the notation from this class’ textbook2.

These definitions are on pages 3, 4, 6, 13, 14, 53.

Term Typical symbol Meaning
or Notation

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
(The) empty string ε The (only) string of length 0
The set of all strings over Σ Σ∗ The collection of all possible strings formed from

symbols from Σ
(Some) language over Σ L (Some) set of strings over Σ
(The) empty language ∅ The empty set, i.e. the set that has no strings

(and no other elements either)

The power set of a set X P(X) The set of all subsets of X
(The set of) natural numbers N The set of positive integers
(Some) finite set The empty set or a set whose distinct elements

can be counted by a natural number
(Some) infinite set A set that is not finite.

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn

then wR = wn · · ·w1. Note: ε
R = ε

Concatenating strings x and y xy take x = x1 · · ·xm, y = y1 · · · yn and form xy =
x1 · · · xmy1 · · · yn

String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y

Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then ac-
cording to the dictionary order, assuming symbols
in Σ have an ordering

2Page references are to the 3rd edition of Sipser’s Introduction to the Theory of Computation, available through various
sources for approximately $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of the book are
also available for those who can’t access the book to borrow from the course instructor, while supplies last (minnes@ucsd.edu)

CC BY-NC-SA 2.0 Version March 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version March 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

