
Week9

Week 9 at a glance

Textbook reading: Section 5.3, Section 5.1, Section 3.2

For Monday, Example 5.26 (page 237).

For Wednesday, Theorem 5.30 (page 238)

For Friday, skim section 3.2.

For Monday of Week 10: Definition 7.1 (page 276)

We will be learning and practicing to:
• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Give examples of sets that are regular, context-free, decidable, or recognizable (and prove that
they are).

∗ Define and explain computational problems, including A∗∗, E∗∗, EQ∗∗, (for **
DFA or TM) and HALTTM

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

– Use mapping reduction to deduce the complexity of a language by comparing to the complexity
of another.

∗ Explain what it means for one problem to reduce to another

∗ Define computable functions, and use them to give mapping reductions between
computational problems

∗ Build and analyze mapping reductions between computational problems

– Classify the computational complexity of a set of strings by determining whether it is regular,
context-free, decidable, or recognizable.

∗ State, prove, and use theorems relating decidability, recognizability, and co-
recognizability.

∗ Prove that a language is decidable or recognizable by defining and analyzing a
Turing machines with appropriate properties.

– Describe several variants of Turing machines and informally explain why they are equally ex-
pressive.

∗ Define an enumerator

∗ Define nondeterministic Turing machines

∗ Use high-level descriptions to define and trace machines (Turing machines and
enumerators)

∗ Apply dovetailing in high-level definitions of machines

CC BY-NC-SA 2.0 Version March 25, 2025 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

TODO:

Review Quiz 8 on PrairieLearn (http://us.prairielearn.com), due 3/5/2025

Review Quiz 9 on PrairieLearn (http://us.prairielearn.com), due 3/12/2025

Homework 6 submitted via Gradescope (https://www.gradescope.com/), due 3/13/2025

Project submitted via Gradescope (https://www.gradescope.com/), due 3/19/2025

CC BY-NC-SA 2.0 Version March 25, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: Mapping reductions and recognizability

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.

Last time we proved that ATM ≤m HALTTM where

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

and since ATM is undecidable, HALTTM is also undecidable. The function witnessing the mapping reduction
mapped strings inATM to strings inHALTTM and strings not inATM to strings not inHALTTM by changing
encoded Turing machines to ones that had identical computations except looped instead of rejecting.

True or False: ATM ≤m HALTTM

True or False: HALTTM ≤m ATM .

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ HALTTM iff F (x) ∈ ATM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x, w⟩.”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is in ATM?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M does not halt on w

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version March 25, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Theorem (Sipser 5.28): If A ≤m B and B is recognizable, then A is recognizable.

Proof:

Corollary: If A ≤m B and A is unrecognizable, then B is unrecognizable.

Strategy:

(i) To prove that a recognizable language R is undecidable, prove that ATM ≤m R.

(ii) To prove that a co-recognizable language U is undecidable, prove that ATM ≤m U , i.e. that ATM ≤m U .

CC BY-NC-SA 2.0 Version March 25, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}

Can we find algorithms to recognize

ETM ?

ETM ?

Claim: ATM ≤m ETM . And hence also ATM ≤m ETM

Proof: Need computable function F : Σ∗ → Σ∗ such that x ∈ ATM iff F (x) /∈ ETM . Define

F = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x⟩.”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ ATM iff its image is not in ETM ?

Input string Output string
⟨M,w⟩ where w ∈ L(M)

⟨M,w⟩ where w /∈ L(M)

x not encoding any pair of TM and string

CC BY-NC-SA 2.0 Version March 25, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: More mapping reductions

Recall: A ismapping reducible to B, written A ≤m B, means there is a computable function f : Σ∗ → Σ∗

such that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

So far:

• ATM is recognizable, undecidable, and not-co-recognizable.

• ATM is unrecognizable, undecidable, and co-recognizable.

• HALTTM is recognizable, undecidable, and not-co-recognizable.

• HALTTM is unrecognizable, undecidable, and co-recognizable.

• ETM is unrecognizable, undecidable, and co-recognizable.

• ETM is recognizable, undecidable, and not-co-recognizable.

EQTM = {⟨M1,M2⟩ | M1 and M2 are both Turing machines and L(M1) = L(M2)}

Can we find algorithms to recognize

EQTM ?

EQTM ?

Goal: Show that EQTM is not recognizable and that EQTM is not recognizable.

Using Corollary to Theorem 5.28: If A ≤m B and A is unrecognizable, then B is unrecognizable, it’s
enough to prove that

HALTTM ≤m EQTM aka HALTTM ≤m EQTM

HALTTM ≤m EQTM aka HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version March 25, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Need computable function F1 : Σ
∗ → Σ∗ such that x ∈ HALTTM iff F1(x) /∈ EQTM .

Strategy:

Map strings ⟨M,w⟩ to strings ⟨M ′
x,

q0start qacc

0, 1, → R

⟩ . This image string is not in EQTM when L(M ′
x) ̸= ∅.

We will build M ′
x so that L(M ′

x) = Σ∗ when M halts on w and L(M ′
x) = ∅ when M loops on w.

Thus: when ⟨M,w⟩ ∈ HALTTM it gets mapped to a string not in EQTM and when ⟨M,w⟩ /∈ HALTTM it
gets mapped to a string that is in EQTM .

Define

F1 = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x,

q0start qacc

0, 1, → R

⟩ ”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is not in EQTM ?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string

Conclude: HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version March 25, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Need computable function F2 : Σ
∗ → Σ∗ such that x ∈ HALTTM iff F2(x) ∈ EQTM .

Strategy:

Map strings ⟨M,w⟩ to strings ⟨M ′
x,

q0start ⟩ . This image string is in EQTM when L(M ′
x) = Σ∗.

We will build M ′
x so that L(M ′

x) = Σ∗ when M halts on w and L(M ′
x) = ∅ when M loops on w.

Thus: when ⟨M,w⟩ ∈ HALTTM it gets mapped to a string in EQTM and when ⟨M,w⟩ /∈ HALTTM it gets
mapped to a string that is not in EQTM .

Define

F2 = “ On input x,

1. Type-check whether x = ⟨M,w⟩ for some TM M and string w. If so, move to step 2; if
not, output ⟨ ⟩

2. Construct the following machine M ′
x:

3. Output ⟨M ′
x,

q0start ⟩ ”

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property
x ∈ HALTTM iff its image is in EQTM ?

Input string Output string
⟨M,w⟩ where M halts on w

⟨M,w⟩ where M loops on w

x not encoding any pair of TM and string

Conclude: HALTTM ≤m EQTM

CC BY-NC-SA 2.0 Version March 25, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Other models of computation

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

True / False: NFAs and PDAs are equally expressive.

True / False: Regular expressions and CFGs are equally expressive.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

Some examples of models that are equally expressive with deterministic Turing
machines:

May-stay machines The May-stay machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R, or Stay.

Formally: (Q,Σ,Γ, δ, q0, qaccept, qreject) where

δ : Q× Γ → Q× Γ× {L,R, S}

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine: never use the direction S!

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Multitape Turing machine A multitape Turing machine with k tapes can be formally represented as

(Q,Σ,Γ, δ, q0, qacc, qrej) where Q is the finite set of states, Σ is the input alphabet with /∈ Σ, Γ is the tape
alphabet with Σ ⊊ Γ , δ : Q× Γk → Q× Γk × {L,R}k (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape
and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

CC BY-NC-SA 2.0 Version March 25, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Enumerators Enumerators give a different model of computation where a language is produced, one
string at a time, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation
proceeds according to transition function; at any point machine may “send” a string to the printer.

E = (Q,Σ,Γ, δ, q0, qprint)

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet (Σ ⊊ Γ, ∈ Γ \ Σ),

δ : Q× Γ× Γ → Q× Γ× Γ× {L,R} × {L,R}

where in state q, when the working tape is scanning character x and the printer tape is scanning character
y, δ((q, x, y)) = (q′, x′, y′, dw, dp) means transition to control state q′, write x′ on the working tape, write y′

on the printer tape, move in direction dw on the working tape, and move in direction dp on the printer tape.
The computation starts in q0 and each time the computation enters qprint the string from the leftmost edge
of the printer tape to the first blank cell is considered to be printed.

The language enumerated by E, L(E), is {w ∈ Σ∗ | E eventually, at finite time, prints w}.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof, part 1: Assume L is enumerated by some enumerator, E, so L = L(E). We’ll use E in a subroutine
within a high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine ME with L(ME) = L(E).

Define ME as follows: ME = “On input w,

1. Run E. For each string x printed by E.

2. Check if x = w. If so, accept (and halt); otherwise, continue.”

Proof, part 2: Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We’ll
use M in a subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator EM with L(EM) = L(M).

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don’t halt.

Recall String order for Σ = {0, 1}: s1 = ε, s2 = 0, s3 = 1, s4 = 00, s5 = 01, s6 = 10, s7 = 11, s8 = 000, . . .

Define EM as follows: EM = “ ignore any input. Repeat the following for i = 1, 2, 3, . . .

1. Run the computations of M on s1, s2, . . . , si for (at most) i steps each

2. For each of these i computations that accept during the (at most) i steps, print out the accepted
string.”

CC BY-NC-SA 2.0 Version March 25, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibil-
ities: (Q,Σ,Γ, δ, q0, qacc, qrej) where

δ : Q× Γ → P(Q× Γ× {L,R})

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the
computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when
some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-
first search of computation tree: one tape is “read-only” input tape, one tape simulates the tape of the
nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Summary

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it’s enough to construct
an example using any of the equally expressive models.

But: some of the performance properties of these models are not equivalent.

CC BY-NC-SA 2.0 Version March 25, 2025 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

