
Week8

Monday: ATM is recognizable but undecidable

Acceptance problem
for Turing machines ATM {⟨M,w⟩ | M is a Turing machine that accepts input string w}
Language emptiness testing
for Turing machines ETM {⟨M⟩ | M is a Turing machine and L(M) = ∅}
Language equality testing
for Turing machines EQTM {⟨M1,M2⟩ | M1 and M2 are Turing machines and L(M1) = L(M2)}

M1

M2

M3

Example strings in ATM

Example strings in ETM

Example strings in EQTM
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Theorem: ATM is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine RATM such that L(RATM) = ATM .

Define RATM = “

Proof of correctness:

We will show that ATM is undecidable. First, let’s explore what that means.
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To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?

How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

• The set of all Turing machines is countably infinite.

• Each recognizable language has at least one Turing machine that recognizes it (by definition), so there
can be no more Turing-recognizable languages than there are Turing machines.

• Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

• Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(Σ∗) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.

Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: ATM is not Turing-decidable.

Proof: Suppose towards a contradiction that there is a Turing machine that decides ATM . We call this
presumed machine MATM .

By assumption, for every Turing machine M and every string w

• If w ∈ L(M), then the computation of MATM on ⟨M,w⟩

• If w /∈ L(M), then the computation of MATM on ⟨M,w⟩

Define a new Turing machine using the high-level description:

D =“ On input ⟨M⟩, where M is a Turing machine:

1. Run MATM on ⟨M, ⟨M⟩⟩.
2. If MATM accepts, reject; if MATM rejects, accept.”
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Is D a Turing machine?

Is D a decider?

What is the result of the computation of D on ⟨D⟩?
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Definition: A language L over an alphabet Σ is called co-recognizable if its complement, defined as
Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}, is Turing-recognizable.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.
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Wednesday: Computable functions and reduction

Mapping reduction

Motivation: Proving that ATM is undecidable was hard. How can we leverage that work? Can we relate
the decidability / undecidability of one problem to another?

If problem X is no harder than problem Y

. . . and if Y is easy,

. . . then X must be easy too.

If problem X is no harder than problem Y

. . . and if X is hard,

. . . then Y must be hard too.

“Problem X is no harder than problem Y ” means “Can answer questions about membership in X by
converting them to questions about membership in Y ”.

Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

TODO

1. What is a computable function?

2. How do mapping reductions help establish the computational difficulty of languages?

CC BY-NC-SA 2.0 Version March 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Computable functions

Definition: A function f : Σ∗ → Σ∗ is a computable function means there is some Turing machine such
that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Examples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted
as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when
interpreted as a fixed-width binary representation of a non-negative integer)

f1 : Σ
∗ → Σ∗ f1(x) = x0

To prove f1 is computable function, we define a Turing machine computing it.

High-level description

“On input w

1. Append 0 to w.

2. Halt.”

Implementation-level description

“On input w

1. Sweep read-write head to the right until find first blank cell.

2. Write 0.

3. Halt.”

Formal definition ({q0, qacc, qrej}, {0, 1}, {0, 1, }, δ, q0, qacc, qrej) where δ is specified by the state diagram:
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The function that maps a string to the result of repeating the string twice.

f2 : Σ
∗ → Σ∗ f2(x) = xx

The function that maps strings that are not the codes of NFAs to the empty string and that maps strings
that code NFAs to the code of a DFA that recognizes the language recognized by the NFA produced by the
macro-state construction from Chapter 1.

The function that maps strings that are not the codes of Turing machines to the empty string and that
maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing
machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new
machine will go into a loop.

f4 : Σ
∗ → Σ∗ f4(x) =

{
ε if x is not the code of a TM

⟨(Q ∪ {qtrap},Σ,Γ, δ′, q0, qacc, qrej)⟩ if x = ⟨(Q,Σ,Γ, δ, q0, qacc, qrej)⟩

where qtrap /∈ Q and

δ′((q, x)) =

{
(r, y, d) if q ∈ Q, x ∈ Γ, δ((q, x)) = (r, y, d), and r ̸= qrej

(qtrap, , R) otherwise
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Definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such that
for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Making intutition precise . . .

Theorem (Sipser 5.22): If A ≤m B and B is decidable, then A is decidable.

Theorem (Sipser 5.23): If A ≤m B and A is undecidable, then B is undecidable.
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Friday: The Halting problem

Recall definition: A is mapping reducible to B means there is a computable function f : Σ∗ → Σ∗ such
that for all strings x in Σ∗,

x ∈ A if and only if f(x) ∈ B.

Notation: when A is mapping reducible to B, we write A ≤m B.

Intuition: A ≤m B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

Example: ATM ≤m ATM

Example: ADFA ≤m {ww | w ∈ {0, 1}∗}
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Halting problem

HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string, and M halts on w}

Define F : Σ∗ → Σ∗ by

F (x) =

{
constout if x ̸= ⟨M,w⟩ for any Turing machine M and string w over the alphabet of M

⟨M ′, w⟩ if x = ⟨M,w⟩ for some Turing machine M and string w over the alphabet of M .

where constout = ⟨ , ε⟩ and M ′ is a Turing machine that computes like M except, if the
computation ever were to go to a reject state, M ′ loops instead.

F (⟨ , ε⟩) =

To use this function to prove that ATM ≤m HALTTM , we need two claims:

Claim (1): F is computable

Claim (2): for every x, x ∈ ATM iff F (x) ∈ HALTTM .
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Week 8 at a glance

Textbook reading: Section 4.1, 4.2, 5.3

For Monday: An undecidable language, Sipser pages 207-209.

For Wednesday: Definition 5.20 and figure 5.21 (page 236)

For Friday: Example 5.24 (page 236)

For Monday of Week 9: Example 5.26 (page 237)

Make sure you can:

• Classify the computational complexity of a set of strings by determining whether it is decidable or
undecidable and recognizable or unrecognizable.

– State, prove, and use theorems relating decidability, recognizability, and co-recognizability.

– Prove that a language is decidable or recognizable by defining and analyzing a Turing machines
with appropriate properties.

• Use diagonalization to prove that there are ’hard’ languages relative to certain models of computation.

• Use mapping reduction to deduce the complexity of a language by comparing to the complexity of
another.

– Define computable functions, and use them to give mapping reductions between computational
problems

– Define and explain ATM and HALTTM

– Build and analyze mapping reductions between computational problems

TODO:

Review quizzes based on class material each day.

Homework assignment 4 due this Thursday.

Test 2 next Friday.
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