
Week6

Week 6 at a glance

Textbook reading: Chapter 3

Before Monday, Page 165-166 Introduction to Section 3.1.

Before Wednesday, Example 3.9 on page 173.

Before Friday, Page 184-185 Terminology for describing Turing machines.

For Week 7 Monday: Introduction to Chapter 4.

We will be learning and practicing to:
• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Use precise notation to formally define the state diagram of a Turing machine

– Use clear English to describe computations of Turing machines informally.

∗ Motivate the definition of a Turing machine

∗ Trace the computation of a Turing machine on given input

∗ Describe the language recognized by a Turing machine

∗ Determine if a Turing machine is a decider

∗ Given an implementation-level description of a Turing machine

∗ Use high-level descriptions to define and trace Turing machines

∗ Apply dovetailing in high-level definitions of machines

– Give examples of sets that are recognizable and decidable (and prove that they are).

∗ State the definition of the class of recognizable languages

∗ State the definition of the class of decidable languages

∗ State the definition of the class of co-recognizable languages

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

• Describe and prove closure properties of classes of languages under certain operations.

– Apply a general construction to create a new Turing machine from an example one.

– Formalize a general construction from an informal description of it.

– Use general constructions to prove closure properties of the class of decidable lan-
gugages.

– Use general constructions to prove closure properties of the class of recognizable
langugages.

TODO:

This week: Test 1 Attempt 1 in CBTF.

Review Quiz 5 on PrairieLearn (http://us.prairielearn.com), due 2/12/2025

Mid quarter feedback survey on Canvas.

CC BY-NC-SA 2.0 Version March 25, 2025 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: Descriptions of Turing machines

We are ready to introduce a formal model that will capture a notion of general purpose computation.

• Similar to DFA, NFA, PDA: input will be an arbitrary string over a fixed alphabet.

• Different from NFA, PDA: machine is deterministic.

• Different from DFA, NFA, PDA: read-write head can move both to the left and to the right, and can
extend to the right past the original input.

• Similar to DFA, NFA, PDA: transition function drives computation one step at a time by moving
within a finite set of states, always starting at designated start state.

• Different from DFA, NFA, PDA: the special states for rejecting and accepting take effect immediately.

(See more details: Sipser p. 166)

Formally: a Turing machine is M = (Q,Σ,Γ, δ, q0, qaccept, qreject) where δ is the transition function

δ : Q× Γ → Q× Γ× {L,R}

The computation of M on a string w over Σ is:

• Read/write head starts at leftmost position on tape.

• Input string is written on |w|-many leftmost cells of tape, rest of the tape cells have the blank symbol.
Tape alphabet is Γ with ∈ Γ and Σ ⊆ Γ. The blank symbol /∈ Σ.

• Given current state of machine and current symbol being read at the tape head, the machine transitions
to next state, writes a symbol to the current position of the tape head (overwriting existing symbol),
and moves the tape head L or R (if possible).

• Computation ends if and when machine enters either the accept or the reject state. This is called
halting. Note: qaccept ̸= qreject.

The language recognized by the Turing machine M , is L(M) = {w ∈ Σ∗ | w is accepted by M},
which is defined as

{w ∈ Σ∗ | computation of M on w halts after entering the accept state}

CC BY-NC-SA 2.0 Version March 25, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

q0start q1

qacc qrej

□;□, R

0;□, R

0;□, R

□;□, R

0;□, R
□;□, R

0;□, R
□;□, R

Formal definition:

Sample computation:

q0 ↓
0 0 0

The language recognized by this machine is . . .

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or,

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

• High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

CC BY-NC-SA 2.0 Version March 25, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

q0start qacc

□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

qrejstart qacc

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version March 25, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

q0start qacc
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

q0start qacc

1;□, R
0;□, R
□;□, R

Example of string accepted:
Example of string rejected:

Implementation-level description

High-level description

CC BY-NC-SA 2.0 Version March 25, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: Recognizable and decidable languages

Sipser Figure 3.10

Conventions in state diagram of TM: b → R label means b → b, R and all arrows missing from diagram
represent transitions with output (qreject, , R)

Implementation level description of this machine:

Zig-zag across tape to corresponding po-
sitions on either side of # to check
whether the characters in these positions
agree. If they do not, or if there is no #,
reject. If they do, cross them off.

Once all symbols to the left of the # are
crossed off, check for any un-crossed-off
symbols to the right of #; if there are
any, reject; if there aren’t, accept.

The language recognized by this machine is

{w#w | w ∈ {0, 1}∗}

Computation on input string 01#01

q1 ↓
0 1 # 0 1

CC BY-NC-SA 2.0 Version March 25, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

High-level description of this machine is

Recall: High-level descriptions of Turing machine al-
gorithms are written as indented text within quo-
tation marks. Stages of the algorithm are typically
numbered consecutively. The first line specifies the
input to the machine, which must be a string.

Extra practice

Computation on input string 01#1

q1 ↓
0 1 # 1

CC BY-NC-SA 2.0 Version March 25, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

A language L is recognized by a Turing machine M means

A Turing machine M recognizes a language L means

A Turing machine M is a decider means

A language L is decided by a Turing machine M means

A Turing machine M decides a language L means

Fix Σ = {0, 1}, Γ = {0, 1, } for the Turing machines with the following state diagrams:

q0start qacc

□;□, R

qrejstart qacc

Decider? Yes / No Decider? Yes / No

q0start qacc
□;□, R

q0start qacc

0;□, R
1;□, R
□;□, R

Decider? Yes / No Decider? Yes / No

CC BY-NC-SA 2.0 Version March 25, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Closure for the classes of recognizable and decidable languages

ATuring-recognizable language is a set of strings that is the language recognized by some Turing machine.
We also say that such languages are recognizable.

A Turing-decidable language is a set of strings that is the language recognized by some decider. We also
say that such languages are decidable.

An unrecognizable language is a language that is not Turing-recognizable.

An undecidable language is a language that is not Turing-decidable.

True or False: Any decidable language is also recognizable.

True or False: Any recognizable language is also decidable.

True or False: Any undecidable language is also unrecognizable.

True or False: Any unrecognizable language is also undecidable.

CC BY-NC-SA 2.0 Version March 25, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True or False: The class of Turing-decidable languages is closed under complementation.

Using formal definition:

Using high-level description:

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and
correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of
computation are equally expressive with the standard Turing machine.

CC BY-NC-SA 2.0 Version March 25, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

