Week 4 at a glance

Textbook reading: Section 2.2, 2.1.

Before Monday, read Definition 2.13 (page 111-112) introducing Pushdown Automata.

Before Wednesday, read Example 2.18 (page 114).

Before Friday, read Introduction to Section 2.1 (pages 101-102).

For Week 5 Monday: Theorem 2.20.

We will be learning and practicing to:

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at PrairieTest (http://us.prairietest.com)

Homework 3 submitted via Gradescope (https://www.gradescope.com/), due Tuesday 10/22/2024

Review Quiz 4 on PrairieLearn (http://us.prairielearn.com), complete by Sunday 10/27/2024

Monday: Pushdown Automata

Regular sets are not the end of the story

The next model of computation. Idea: allow some memory of unbounded size. How?

Is there a PDA that recognizes the nonregular language \(\{0^n1^n \mid n \geq 0 \}\)?

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject the input.

Trace the computation of this PDA on the input string \(01\).

Trace the computation of this PDA on the input string \(011\).

A PDA recognizing the set \(\{ \hspace{1.5 in} \}\) can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left to read, read that 1 and accept the input. If the stack becomes empty and there are either zero or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

Wednesday: More Pushdown Automata

Definition A pushdown automaton (PDA) is specified by a \(6\)-tuple \((Q, \Sigma, \Gamma, \delta, q_0, F)\) where \(Q\) is the finite set of states, \(\Sigma\) is the input alphabet, \(\Gamma\) is the stack alphabet, \[\delta: Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \to \mathcal{P}( Q \times \Gamma_\varepsilon)\] is the transition function, \(q_0 \in Q\) is the start state, \(F \subseteq Q\) is the set of accept states.

Draw the state diagram and give the formal definition of a PDA with \(\Sigma = \Gamma\).

Draw the state diagram and give the formal definition of a PDA with \(\Sigma \cap \Gamma = \emptyset\).

For the PDA state diagrams below, \(\Sigma = \{0,1\}\).

Mathematical description of language State diagram of PDA recognizing language
\(\Gamma = \{ \$, \#\}\)
\(\Gamma = \{ \sun, 1\}\)
\(\{ 0^i 1^j 0^k \mid i,j,k \geq 0 \}\)

Note: alternate notation is to replace \(;\) with \(\to\)

Friday: Context-free Grammars

Big picture: PDAs were motivated by wanting to add some memory of unbounded size to NFA. How do we accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle, beginning, or end of the final string as the derivation proceeds.
Definitions below are on pages 101-102.

Term Typical symbol Meaning
or Notation
Context-free grammar (CFG) \(G\) \(G = (V, \Sigma, R, S)\)
The set of variables \(V\) Finite set of symbols that represent phases in production pattern
The set of terminals \(\Sigma\) Alphabet of symbols of strings generated by CFG
\(V \cap \Sigma = \emptyset\)
The set of rules \(R\) Each rule is \(A \to u\) with \(A \in V\) and \(u \in (V \cup \Sigma)^*\)
The start variable \(S\) Usually on left-hand-side of first/ topmost rule
Derivation \(S \Rightarrow \cdots \Rightarrow w\) Sequence of substitutions in a CFG (also written \(S \Rightarrow^* w\)). At each step, we can apply one rule to one occurrence of a variable in the current string by substituting that occurrence of the variable with the right-hand-side of the rule. The derivation must end when the current string has only terminals (no variables) because then there are no instances of variables to apply a rule to.
Language generated by the context-free grammar \(G\) \(L(G)\) The set of strings for which there is a derivation in \(G\). Symbolically: \(\{ w \in \Sigma^* \mid S \Rightarrow^* w \}\) i.e. \[\{ w \in \Sigma^* \mid \text{there is derivation in $G$ that ends in $w$} \}\]
Context-free language A language that is the language generated by some context-free grammar

Examples of context-free grammars, derivations in those grammars, and the languages generated by those grammars

\(G_1 = (\{S\}, \{0\}, R, S)\) with rules \[\begin{aligned} &S \to 0S\\ &S \to 0\\ \end{aligned}\] In \(L(G_1)\)

Not in \(L(G_1)\)

\(G_2 = (\{S\}, \{0,1\}, R, S)\) \[S \to 0S \mid 1S \mid \varepsilon\] In \(L(G_2)\)

Not in \(L(G_2)\)

\((\{S, T\}, \{0, 1\}, R, S)\) with rules \[\begin{aligned} &S \to T1T1T1T \\ &T \to 0T \mid 1T \mid \varepsilon \end{aligned}\]

In \(L(G_3)\)

Not in \(L(G_3)\)

\(G_4 = (\{A, B\}, \{0, 1\}, R, A)\) with rules \[A \to 0A0 \mid 0A1 \mid 1A0 \mid 1A1 \mid 1\] In \(L(G_4)\)

Not in \(L(G_4)\)

Design a CFG to generate the language \(\{a^n b^n \mid n \geq 0\}\)

Sample derivation: