Week 4 at a glance

Textbook reading: Section 1.4, 2.2, 2.1.

Before Monday, read Introduction to Section 1.4 (page 77) which introduces nonregularity.

Before Wednesday, read Definition 2.13 (page 111-112) introducing Pushdown Automata.

Before Friday, read Example 2.18 (page 114).

For Week 5 Monday: read Introduction to Section 2.1 (pages 101-102).

We will be learning and practicing to:

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at PrairieTest (http://us.prairietest.com)

Review Quiz 3 on PrairieLearn (http://us.prairielearn.com), due 1/29/2025

Homework 2 submitted via Gradescope (https://www.gradescope.com/), due 1/30/2025

Review Quiz 4 on PrairieLearn (http://us.prairielearn.com), due 2/5/2025

Monday: Pumping Lemma

Definition and Theorem: For an alphabet \(\Sigma\), a language \(L\) over \(\Sigma\) is called regular exactly when \(L\) is recognized by some DFA, which happens exactly when \(L\) is recognized by some NFA, and happens exactly when \(L\) is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise concatenation, and Kleene star.

Extra practice:

Disprove: There is some alphabet \(\Sigma\) for which there is some language recognized by an NFA but not by any DFA.

Disprove: There is some alphabet \(\Sigma\) for which there is some finite language not described by any regular expression over \(\Sigma\).

Disprove: If a language is recognized by an NFA then the complement of this language is not recognized by any DFA.

Fix alphabet \(\Sigma\). Is every language \(L\) over \(\Sigma\) regular?

Set Cardinality
\(\{0,1\}\)
\(\{0,1\}^*\)
\(\mathcal{P}( \{0,1\})\)
The set of all languages over \(\{0,1\}\)
The set of all regular expressions over \(\{0,1\}\)
The set of all regular languages over \(\{0,1\}\)

Strategy: Find an invariant property that is true of all regular languages. When analyzing a given language, if the invariant is not true about it, then the language is not regular.

Pumping Lemma (Sipser Theorem 1.70): If \(A\) is a regular language, then there is a number \(p\) (a pumping length) where, if \(s\) is any string in \(A\) of length at least \(p\), then \(s\) may be divided into three pieces, \(s = xyz\) such that

Proof idea: In DFA, the only memory available is in the states. Automata can only “remember” finitely far in the past and finitely much information, because they can have only finitely many states. If a computation path of a DFA visits the same state more than once, the machine can’t tell the difference between the first time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept (infinitely) many similar strings.

Proof illustration

True or False: A pumping length for \(A = \{ 0,1 \}^*\) is \(p = 5\).

True or False: A pumping length for \(A = \{ 0,1 \}^*\) is \(p = 2\).

True or False: A pumping length for \(A = \{ 0,1 \}^*\) is \(p = 105\).

Restating Pumping Lemma: If \(L\) is a regular language, then it has a pumping length.

Contrapositive: If \(L\) has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language \(L\) is not regular,

Negation: A positive integer \(p\) is not a pumping length of a language \(L\) over \(\Sigma\) iff \[\exists s \left(~ |s| \geq p \wedge s \in L \wedge \forall x \forall y \forall z \left( ~\left( s = xyz \wedge |y| > 0 \wedge |xy| \leq p~ \right) \to \exists i ( i \geq 0 \wedge xy^iz \notin L ) \right) ~\right)\]

Wednesday: Proving nonregularity, and beyond

Proof strategy: To prove that a language \(L\) is not regular,

Example: \(\Sigma = \{0,1\}\), \(L = \{ 0^n 1^n \mid n \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{w w^{\mathcal{R}} \mid w \in \{0,1\}^*\}\). Remember that the reverse of a string \(w\) is denoted \(w^\mathcal{R}\) and means to write \(w\) in the opposite order, if \(w = w_1 \cdots w_n\) then \(w^\mathcal{R} = w_n \cdots w_1\). Note: \(\varepsilon^\mathcal{R} = \varepsilon\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{0^j1^k \mid j \geq k \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Example: \(\Sigma = \{0,1\}\), \(L = \{0^n1^m0^n \mid m,n \geq 0\}\).

Fix \(p\) an arbitrary positive integer. List strings that are in \(L\) and have length greater than or equal to \(p\):

Pick \(s =\)

Suppose \(s = xyz\) with \(|xy| \leq p\) and \(|y| > 0\).

Then when \(i = \hspace{1in}\), \(xy^i z = \hspace{1in}\)

Extra practice:

Language \(s \in L\) \(s \notin L\) Is the language regular or nonregular?
\(\{a^nb^n \mid 0 \leq n \leq 5 \}\)
\(\{b^n a^n \mid n \geq 2\}\)
\(\{a^m b^n \mid 0 \leq m\leq n\}\)
\(\{a^m b^n \mid m \geq n+3, n \geq 0\}\)
\(\{b^m a^n \mid m \geq 1, n \geq 3\}\)
\(\{ w \in \{a,b\}^* \mid w = w^\mathcal{R} \}\)
\(\{ ww^\mathcal{R} \mid w\in \{a,b\}^* \}\)

Friday: Pushdown Automata

Regular sets are not the end of the story

The next model of computation. Idea: allow some memory of unbounded size. How?

Is there a PDA that recognizes the nonregular language \(\{0^n1^n \mid n \geq 0 \}\)?

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject the input.

Trace a computation of this PDA on the input string \(01\).

Extra practice: Trace the computations of this PDA on the input string \(011\).

A PDA recognizing the set \(\{ \hspace{1.5 in} \}\) can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen, pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left to read, read that 1 and accept the input. If the stack becomes empty and there are either zero or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description: