
Week1

Let’s get started

We want you to be successful.

We will work together to build an environment in CSE 105 that supports your learning in a way that
respects your perspectives, experiences, and identities (including race, ethnicity, heritage, gender, sex,
class, sexuality, religion, ability, age, educational background, etc.). Our goal is for you to engage with
interesting and challenging concepts and feel comfortable exploring, asking questions, and thriving.

If you or someone you know is suffering from food and/or housing insecurities there are UCSD resources
here to help:

Basic Needs Office: https://basicneeds.ucsd.edu/

Triton Food Pantry (in the old Student Center) is free and anonymous, and includes produce:

https://www.facebook.com/tritonfoodpantry/

Mutual Aid UCSD: https://mutualaiducsd.wordpress.com/

Financial aid resources, the possibility of emergency grant funding, and off-campus housing referral resources
are available: see your College Dean of Student Affairs.

If you find yourself in an uncomfortable situation, ask for help. We are committed to upholding Univer-
sity policies regarding nondiscrimination, sexual violence and sexual harassment. Here are some campus
contacts that could provide this help: Counseling and Psychological Services (CAPS) at 858 534-3755 or
http://caps.ucsd.edu; OPHD at 858 534-8298 or ophd@ucsd.edu , http://ophd.ucsd.edu; CARE at Sexual
Assault Resource Center at 858 534-5793 or sarc@ucsd.edu , http://care.ucsd.edu.

Please reach out (minnes@ucsd.edu) if you need support with extenuating circumstances affecting CSE 105.

Introductions

Class website: https://canvas.ucsd.edu/courses/51649/

Instructor: Prof. Mia Minnes ”Minnes” rhymes with Guinness, minnes@ucsd.edu, http://cseweb.ucsd.edu/ minnes

Our team: One instructor + two TAs and eleven tutors + all of you

Fill in contact info for students around you, if you’d like:

CC BY-NC-SA 2.0 Version March 29, 2024 (1)

https://basicneeds.ucsd.edu/
https://www.facebook.com/tritonfoodpantry/
https://mutualaiducsd.wordpress.com/
http://caps.ucsd.edu
http://ophd.ucsd.edu
http://care.ucsd.edu
https://canvas.ucsd.edu/courses/51649/
http://cseweb.ucsd.edu/~minnes
https://creativecommons.org/licenses/by-nc-sa/2.0/

Welcome to CSE 105: Introduction to Theory of Computation in Winter 2024!

CSE 105’s Big Questions

• What problems are computers capable of solving?

• What resources are needed to solve a problem?

• Are some problems harder than others?

In this context, a problem is defined as: “Making a decision or computing a value based on some input”

Consider the following problems:

• Find a file on your computer

• Determine if your code will compile

• Find a run-time error in your code

• Certify that your system is un-hackable

Which of these is hardest?

In Computer Science, we operationalize “hardest” as “requires most resources”, where resources might be
memory, time, parallelism, randomness, power, etc.

To be able to compare “hardness” of problems, we use a consistent description of problems

Input: String

Output: Yes/ No, where Yes means that the input string matches the pattern or property described by
the problem.

CC BY-NC-SA 2.0 Version March 29, 2024 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: Terminology and Notation

The CSE 105 vocabulary and notation build on discrete math and introduction to proofs classes. Some of
the conventions may be a bit different from what you saw before so we’ll draw your attention to them.

For consistency, we will use the notation from this class’ textbook1.

These definitions are on pages 3, 4, 6, 13, 14, 53.

Term Typical symbol Meaning
or Notation

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
(The) empty string ε The (only) string of length 0
The set of all strings over Σ Σ∗ The collection of all possible strings formed from

symbols from Σ
(Some) language over Σ L (Some) set of strings over Σ
(The) empty language ∅ The empty set, i.e. the set that has no strings

(and no other elements either)

The power set of a set X P(X) The set of all subsets of X
(The set of) natural numbers N The set of positive integers
(Some) finite set The empty set or a set whose distinct elements

can be counted by a natural number
(Some) infinite set A set that is not finite.

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn

then wR = wn · · ·w1. Note: ε
R = ε

Concatenating strings x and y xy take x = x1 · · ·xm, y = y1 · · · yn and form xy =
x1 · · · xmy1 · · · yn

String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y

Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then ac-
cording to the dictionary order, assuming symbols
in Σ have an ordering

1Page references are to the 3rd edition of Sipser’s Introduction to the Theory of Computation, available through various
sources for approximately $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of the book are
also available for those who can’t access the book to borrow from the course instructor, while supplies last (minnes@ucsd.edu)

CC BY-NC-SA 2.0 Version March 29, 2024 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version March 29, 2024 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Wednesday

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
difficult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?

CC BY-NC-SA 2.0 Version March 29, 2024 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

This definition was in the pre-class reading Definition 1.52: A regular expression over alphabet Σ
is a syntactic expression that can describe a language over Σ. The collection of all regular expressions over
Σ is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a ∈ Σ

ε is a regular expression

∅ is a regular expression

Recursive steps of recursive definition

(R1 ∪R2) is a regular expression when R1, R2 are regular expressions

(R1 ◦R2) is a regular expression when R1, R2 are regular expressions

(R∗
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular
expression. The function that assigns a language to a regular expression over Σ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a ∈ Σ, is {a} and we write L(a) = {a}
The language described by ε is {ε} and we write L(ε) = {ε}
The language described by ∅ is {} and we write L(∅) = ∅.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ∪R2) is the union of the languages described by R1 and R2, and we write

L((R1 ∪R2)) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) ∨ w ∈ L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ◦R2) is the concatenation of the languages described by R1 and R2, and we write

L((R1 ◦R2)) = L(R1) ◦ L(R2) = {uv | u ∈ L(R1) ∧ v ∈ L(R2)}

When R1 is a regular expression, the language described by the regular expression (R∗
1) is

the Kleene star of the language described by R1 and we write

L((R∗
1)) = (L(R1))

∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L(R1)}

CC BY-NC-SA 2.0 Version March 29, 2024 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For the following examples assume the alphabet is Σ1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression ε is L(ε) = {ε}

The language described by the regular expression ∅ is L(∅) = ∅

The language described by the regular expression (Σ1Σ1Σ1)
∗ is L((Σ1Σ1Σ1)

∗) =

The language described by the regular expression 1+ is L((1+)) = L(1∗ ◦ 1) =

Shorthand and conventions (Sipser pages 63-65)

Assuming Σ is the alphabet, we use the following conventions

Σ regular expression describing language consisting of all strings of length 1 over Σ
∗ then ◦ then ∪ precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 ◦R2 (concatenation symbol is implicit)
R+ shorthand for R∗ ◦R
Rk shorthand for R concatenated with itself k times, where k is a (specific) natural number

CC BY-NC-SA 2.0 Version March 29, 2024 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Caution: many programming languages that support regular expressions build in functionality
that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.

Extra examples for practice:

Which regular expression(s) below describe a language that includes the string a as an element?

a∗b∗

a(ba)∗b

a∗ ∪ b∗

(aaa)∗

(ε ∪ a)b

CC BY-NC-SA 2.0 Version March 29, 2024 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Friday

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: ab ∈ L((a ∪ b)∗)

True or False: ba ∈ L(a∗b∗)

True or False: ε ∈ L(a ∪ b ∪ c)

True or False: ε ∈ L((a ∪ b)∗)

True or False: ε ∈ L(aa∗ ∪ bb∗)

This definition was in the pre-class reading A finite automaton (FA) is specified by M = (Q,Σ, δ, q0, F).
This 5-tuple is called the formal definition of the FA. The FA can also be represented by its state diagram:
with nodes for the state, labelled edges specifying the transition function, and decorations on nodes denoting
the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the automaton based on the current state of
the machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the automaton, F ⊆ Q. These states
are used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The finite automaton M accepts the given input string exactly when the computation of M
on the input string ends in an accept state. M rejects the given input string exactly when the
computation of M on the input string ends in a nonaccept state, that is, a state that is not in
F .

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

CC BY-NC-SA 2.0 Version March 29, 2024 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

What is finite about all finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The length of each computation of the machine

□ The number of strings that are accepted by the machine

The formal definition of this FA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the FA or rejected by the FA.

Why are these the only two options?

The language recognized by this automaton is

CC BY-NC-SA 2.0 Version March 29, 2024 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

The language recognized by this automaton is

The language recognized by this automaton is

CC BY-NC-SA 2.0 Version March 29, 2024 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 at a glance

Textbook reading: Chapter 0, Sections 1.3, 1.1

For Monday: Class syllabus https://canvas.ucsd.edu/courses/45073.

For Wednesday: Example 1.51 and Definition 1.52 (definition of regular expressions) on page 64. Notice:
we are jumping to Section 1.3 and then will come back to Section 1.1 on Friday.

For Friday: Figure 1.4 and Definition 1.5 (definition of finite automata) on pages 34-35. The definition of
the union, concatenation, and star operations for languages is given as Definition 1.23 on page 44 and a
useful example is Example 1.24.

For Week 2 Wednesday: Pages 41-43 (Figures 1.18, 1.19, 1.20) (examples of automata and languages).
Notice: Week 2 Monday is a UCSD Holiday in observance of Martin Luther King Jr. day so there is no
CSE 105 class.

Textbook references: Within a chapter, each item is numbered consecutively. Figure 1.22 is the twenty-second
numbered item in chapter one; it comes right after Example 1.21 and right before Definition 1.23.

Make sure you can:

• Distinguish between alphabet, language, sets, and strings

• Translate a decision problem to a set of strings coding the problem

• Use regular expressions and relate them to languages and automata

– Write and debug regular expressions using correct syntax

– Determine if a given string is in the language described by a regular expression

• Use precise notation to formally define the state diagram of finite automata and use clear English to
describe computations of finite automata informally.

– State the formal definition of (deterministic) finite automata

– Trace the computation of a finite automaton on a given string using its state diagram

– Translate between a state diagram and a formal definition

– Determine if a given string is in the language described by a finite automaton

TODO:

#FinAid Assignment on Canvas https://canvas.ucsd.edu/courses/51649/quizzes/158899

Review quizzes based on class material each day.

Homework assignment 1 due next week.

CC BY-NC-SA 2.0 Version March 29, 2024 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

