
ProjectCSE105F24: Project

CSE105F24

Due December 11, 2024 at 11am

The CSE 105 project is designed for you to go deeper and extend your work on assignments and
to see how some of the abstract notions we discuss can be implemented in concrete ways. The
project is an individual assignment and has two tasks:

Task 1: Illustrating the decidability of a computational problem, and

Task 2: Illustrating a mapping reduction

What resources can you use? This project must be completed individually, without any
help from other people, including the course staff (other than logistics support if you get stuck
with screencast). You can use any of this quarter’s CSE 105 offering (notes, readings, class
videos, homework feedback). Tools for drawing state diagrams (like Flap.js and JFLAP and the
PrairieLearn automata library) can be used to help draw the diagrams in the project too.

These resources should be more than enough. If you are struggling to get started and want to
look elsewhere online, you must acknowledge this by listing and citing any resources you consult
(even if you do not explicitly quote them), including any large-language model style resources
(ChatGPT, Bard, Co-Pilot, etc.). Link directly to them and include the name of the author /
video creator, any and all search strings or prompts you used, and the reason you consulted this
reference. The work you submit for the project needs to be your own. Again, you shouldn’t need
to look anywhere other than this quarter’s material and doing so may result in definitions that
conflict with our conventions in this class so think carefully before you go down this path.

If you get stuck on any part of the project, we encourage you to focus on communicating what
you think the question might mean, including bringing an example from class or homework you
think might be relevant, and include any submission any aspect where you’re unsure. Clear
communication about these theoretical ideas and their applications is one of the main goals of
the project.

Submitting the project You will submit a PDF plus a video file for the first task and a PDF
plus a video fiile for the second task. All file submissions will be in Gradescope.

Copyright Mia Minnes, 2024, Version December 7, 2024 (1)



Your video: You may produce screencasts with any software you choose. One option is to
record yourself with Zoom; a tutorial on how to use Zoom to record a screencast (courtesy of
Prof. Joe Politz) is here:

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU.

The video that was produced from that recording session in Zoom is here:

https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl

Please send an email to the instructors (minnes@ucsd.edu) if you have concerns about the video
/ screencast components of this project or cannot complete projects in this style for some reason.

Reference definitions for computational problems from Section 4.1:

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular
expressions

AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular
expressions

EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular
expressions

EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

Copyright Mia Minnes, 2024, Version December 7, 2024 (2)

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU
https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl


Task 1: Illustrating the decidability of a computational problem Many computational
problems are decidable, sometimes using beautiful algorithms. In this part of the project, you’ll
choose a decidable computational problem, and demonstrate the proof that it is decidable by
building a program in a programming language of your choice (aka a high-level description of
a Turing machine) that decides it. You will then demonstrate how your construction works for
some test examples.

Specifically:

1. Choose a decidable computational problem from Section 4.1. Note: if you’d like to consider
a different computational problem instead, please check with Prof. Minnes first. You must
do so no later than the start of Week 9.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language
of your choosing that decides this computational problem. The function input must be
a string and part of your work in this program is to design string representations for
arbitrary instances of the model of computation the computational problem you picked is
about (e.g. DFA, NFA, regular expressions, CFG, or NFA). The function output must be
a boolean true (if the string is in the set representing the computational problem) or false
(if the string is not in the set representing the computational problem).

• You may use our class notes and the textbook for ideas on the algorithm that your
program will implement.

• If you would like, you may use aids such as co-pilot or ChatGPT to help you write this
program. However, you should test the code that is produced and be able to explain
what it is doing. Your code needs to be well-organized and well-documented. As a
header in your code file, include a comment block describing any resources that were
used to help generate your code, including any and all prompts used in interactions
with LLM coding tools.

3. To demonstrate your program, select one string that is in the set representing the com-
putational problem, and one string that is not in the set representing the computational
problem, explain why these strings are valid examples, and demonstrate running your pro-
gram on each to get the appropriate output.

Presenting your reasoning and demonstrating it via screenshare are important skills that also
show us a lot of your learning. Getting practice with this style of presentation is a good thing
for you to learn in general and a rich way for us to assess your skills. To demonstrate your work,
you will create a 3-5 minute screencast video explaining your code design and demonstrating its
functionality.

Copyright Mia Minnes, 2024, Version December 7, 2024 (3)



Checklist for submission For this task, you will submit a PDF plus a video file.

(PDF) Writeup includes a clear specification of computational problem being decided.

(PDF) Documentation for program deciding this computational problem: include a description of
how input strings are parsed to represent instances of the computational problem.

(PDF) Clear specification of two example strings, explaining which is in the set (and why) and
which is not in the set (and why not).

(PDF) Project submission includes a printout of code for program implementing algorithm to
decide the computational problem, as well as screen shots demonstrating running your
program on your example strings.

(PDF) Project writeup is typed or clearly hand drawn with precise language and notation for all
terms.

(Video) Start with your face and your student ID visible for a few seconds at the beginning, and
introduce yourself audibly while on screen. You don’t have to be on camera for the rest of
the video, though it’s fine if you are. We are looking for a brief confirmation that it’s you
creating the video and doing the work you submitted.

(Video) Present the computational problem you will be working with, and example strings that
you will be using, including explanations of why you chose this problem and these strings
(and why one of the strings is in the set and why the other is not).

(Video) Show on the screen and explain the code for your program, including the software design
choices you made (e.g. which data structures are you using, etc.) and any resources you
used. The video should clearly describe which programming language was chosen for the
implementation and gives the reasons why.

(Video) Demonstrate running your code on each of your example inputs. The video should include
screencasts of running the code live. Explain why the output of your program is what you
would expect, by connecting the output of the the definition of the computational problem
and your chosen parsing of input strings.

(Video) Logistics: video needs to load correctly, be between 3 and 5 minutes, show your face and
ID, and you introduce yourself audibly while on screen.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Copyright Mia Minnes, 2024, Version December 7, 2024 (4)



Task 2: Illustrating a mapping reduction We can use mapping reductions to prove that
interesting computational problems are undecidable, building on the undecidability of other com-
putational problems. In this part of the project, you’ll choose a specificmapping reduction and
implement a computable function that witnesses it using a programming language of your choice
(aka a high-level description of a Turing machine that computes it). You will then demonstrate
how your construction works for some test examples.

Specifically:

1. Choose a mapping reduction we discussed in class or in the homework or in review quizzes
or in the textbook where both sets being compared are undecidable. Note: if you’d like
to consider a mapping reduction we have not discussed instead, please check with Prof.
Minnes first. You must do so no later than the start of Week 9.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language of
your choosing that implements a computable function witnessing this mapping reduction.
The function input must be a string and the function output must be a string. Part
of your work in this program is to design string representations for arbitrary instances of
the model of computation the computational problems being compared in the mapping
reduction. Your function will need to be able to process *any* string as input.

• You may use our class notes and the textbook for ideas on the algorithm that your
program will implement.

• If you would like, you may use aids such as co-pilot or ChatGPT to help you write this
program. However, you should test the code that is produced and be able to explain
what it is doing. Your code needs to be well-organized and well-documented. As a
header in your code file, include a comment block describing any resources that were
used to help generate your code, including any and all prompts used in interactions
with LLM coding tools.

3. To demonstrate your program, you will need to run it for an example positive and negative
instance. That is to say, if you are implementing a computable function witnessing X ≤m

Y , you will select one string that is in X and one string that is not in X, and you will
demonstrate running your program on each of these strings and explain why the output of
the function is good.

Presenting your reasoning and demonstrating it via screenshare are important skills that also
show us a lot of your learning. Getting practice with this style of presentation is a good thing
for you to learn in general and a rich way for us to assess your skills. To demonstrate your work,
you will create a 3-5 minute screencast video explaining your code design and demonstrating its
functionality.

Copyright Mia Minnes, 2024, Version December 7, 2024 (5)



Checklist for submission For this task, you will submit a PDF plus a video file.

(PDF) Writeup includes a clear specification of mapping reduction being witnessed, and both sets
in the reduction are undecidable.

(PDF) Documentation for program computing the function witnessing this mapping reduction:
include a description of how input strings are parsed and how output strings correspond
to input strings.

(PDF) Clear specification of two example strings, explaining which is is a positive instance (and
why) and which is a negative instance (and why not).

(PDF) Project submission includes a printout of code for program computing the function witness-
ing the mapping reduction, as well as screen shots demonstrating running your program
on your example strings.

(PDF) Project writeup is typed or clearly hand drawn with precise language and notation for all
terms.

(Video) Start with your face and your student ID visible for a few seconds at the beginning, and
introduce yourself audibly while on screen. You don’t have to be on camera for the rest of
the video, though it’s fine if you are. We are looking for a brief confirmation that it’s you
creating the video and doing the work you submitted.

(Video) Present the mapping reduction you will be working with, and example strings that you will
be using, including explanations of why you chose this reduction and these strings (and
why one of the strings is a positive instance and the other is a negative instance).

(Video) Show on the screen and explain the code for your program, including the software design
choices you made (e.g. which data structures are you using, etc.) and any resources you
used. The video should clearly describe which programming language was chosen for the
implementation and gives the reasons why.

(Video) Demonstrate running your code on each of your example inputs. The video should include
screencasts of running the code live. Explain why the output of your program is what you
would expect, by connecting the output of the program to the definition of the mapping
reduction and your chosen parsing of input strings.

(Video) Logistics: video needs to load correctly, be between 3 and 5 minutes, show your face and
ID, and you introduce yourself audibly while on screen.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Copyright Mia Minnes, 2024, Version December 7, 2024 (6)


