
HW4CSE105F24: Homework assignment 4

CSE105F24

Due: November 12, 2024 at 5pm, via Gradescope

In this assignment,

You will work with context-free languages and their representations. You will also practice
analyzing, designing, and working with Turing machines. You will use general constructions and
specific machines to explore the classes of recognizable and decidable languages.

Resources: To review the topics for this assignment, see the class material from Weeks 4, 5,
and 6. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapters 2 and 3. Chapter 2 exercises 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9, 2.10, 2.11, 2.12, 2.13, 2.16, 2.17. Chapter 3 exercises 3.1, 3.2, 3.5,
3.8.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. For “graded for correctness” questions: collaboration is allowed only with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. For “graded
for completeness” questions: collaboration is allowed with any CSE 105 students this quarter; if
your group has questions about a problem, you may ask in drop-in help hours or post a public
post on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in

Copyright Mia Minnes, 2024, Version December 7, 2024 (1)

computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines,you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2)) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• You may not collaborate on homework questions graded for correctness with anyone other
than your group members. You may ask questions about the homework in office hours (of
the instructor, TAs, and/or tutors) and on Piazza (as private notes viewable only to the
Instructors). You cannot use any online resources about the course content other than the
class material from this quarter – this is primarily to ensure that we all use consistent nota-
tion and definitions (aligned with the textbook) and also to protect the learning experience
you will have when the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw4CSE105F24”.

Assigned questions

1. Push-down automata (PDA) and context-free grammars (CFG) (8 points): On page
14 of the week 3 notes, we have the following list of languages over the alphabet {a, b}

{anbn | 0 ≤ n ≤ 5} {bnan | n ≥ 2} {ambn | 0 ≤ m ≤ n}
{ambn | m ≥ n+ 3, n ≥ 0} {bman | m ≥ 1, n ≥ 3}
{w ∈ {a, b}∗ | w = wR} {wwR | w ∈ {a, b}∗}

(a) (Graded for completeness) 1 Pick one of the regular languages and design a regular expression

1This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2024, Version December 7, 2024 (2)

https://www.gradescope.com

that describes it. Briefly justify your regular expression by connecting the subexpressions
of it to the intended language and referencing relevant definitions.

(b) (Graded for completeness) Pick another one of the regular languages and design a deter-
ministic finite automaton (DFA) that recognizes it. Draw the state diagram of your DFA.
Briefly justify your design by explaining the role each state plays in the machine, as well as
a brief justification about how the strings accepted and rejected by the machine connect to
the specified language.

(c) (Graded for completeness) Pick one of the nonregular languages and design a PDA that
recognizes it. Draw the state diagram of your PDA. Briefly justify your design by explaining
the role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

(d) (Graded for completeness) Pick one of the nonregular languages and write a CFG that
generates it. Briefly justify your design by demonstrating how derivations in the grammar
relate to the intended language.

2. General constructions for context-free languages (21 points):

In class in weeks 4 and 5, we described several general constructions with PDAs and CFGs, leaving
their details to homework. In this question, we’ll fill in these details. The first constructions help
us prove that the class of regular languages is a subset of the class of context-free languages. The
other construction allows us to make simplifying assumptions about PDAs recognizing languages.

(a) (Graded for correctness) 2 When we first introduced PDAs we observed that any NFA can
be transformed to a PDA by not using the stack of the PDA at all. Suppose a friend gives
you the following construction to formalize this transformation:

Given a NFA N = (Q,Σ, δN , q0, F) we define a PDA M with L(M) = L(N) by
letting M = (Q,Σ,Σ, δ, q0, F) where δ((q, a, b)) = δN((q, a)) for each q ∈ Q,
a ∈ Σε and b ∈ Σε.

For each of the six defining parameters for the PDA, explain whether it’s defined correctly
or not. If it is not defined correctly, explain why not and give a new definition for this
parameter that corrects the mistake.

(b) (Graded for correctness) In the book on page 107, the top paragraph describes a procedure
for converting DFAs to CFGs:

You can convert any DFA into an equivalent CFG as follows. Make a variable Ri

for each state qi of the DFA. Add the rule Ri → aRj to the CFG if δ(qi, a) = qj
is a transition in the DFA. Add the rule Ri → ε if qi is an accept state of the
DFA. Make R0 the start variable ofthe grammar, where q0 is the start state of the

2This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2024, Version December 7, 2024 (3)

machine. Verify on your own that the resulting CFG generates the same language
that the DFA recognizes.

Use this construction to get a context-free grammar generating the language

{w ∈ {0, 1}∗ | w does not end in 101}

by (1) designing a DFA that recognizes this language and then (2) applying the construction
from the book to convert the DFA to an equivalent CFG. A complete and correct submission
will include the state diagram of the DFA, a brief justification of why it recognizes the
language, and then the complete and precise definition of the CFG that results from applying
the construction from the book to this DFA. Ungraded bonus: take a sample string in the
language and see how the computation of the DFA on this string translates to a derivation
in your grammar.

(c) Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) be a PDA and let qnew, rnew, snew be three fresh state labels
(i.e. Q1∩{qnew, rnew, snew} = ∅) and let # be a fresh stack symbol (i.e. # /∈ Γ1). We define
the PDA M2 as

(Q2,Σ,Γ2, δ2, qnew, {snew})

with Q2 = Q1 ∪{qnew, rnew, snew} and Γ2 = Γ1 ∪{#} and δ2 : Q2×Σε×Γ2ε → P(Q2×Γ2ε)
given by

δ2((q, a, b)) =



{(q1,#)} if q = qnew, a = ε, b = ε

δ1((q, a, b)) if q ∈ Q1 \ F1, a ∈ Σε, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a ∈ Σ, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a = ε, b ∈ Γ1

δ1((q, a, b)) ∪ {(rnew, ε)} if q ∈ F1, a = ε, b = ε

{(rnew, ε)} if q = rnew, a = ε, b ∈ Γ1

{(snew, ε)} if q = rnew, a = ε, b = #

∅ otherwise

for each q ∈ Q2, a ∈ Σε, and b ∈ Γ2ε.

In this question, we’ll apply this construction for a specific PDA and use this example to
extrapolate the effect of this construction.

i. (Graded for correctness) Consider the PDA M1 with input alphabet {0, 1} and stack
alphabet {0, 1} whose state diagram is

s1start

1, ε; 0

Draw the state diagram for the PDA M2 that results from applying the construction
to M1.

Copyright Mia Minnes, 2024, Version December 7, 2024 (4)

ii. (Graded for completeness) Compare L(M1) and L(M2). Are these sets equal? Does
your answer depend on the specific choice of M1? Why or why not?

iii. (Graded for completeness) Consider the PDA N with input alphabet {0, 1} and stack
alphabet {0, 1} whose state diagram is

q1start q2

0, ε; 0

1, 0; ε

1, 0; ε

Remember that the definition of set-wise concatenation is: for languages L1, L2 over
the alphabet Σ, we have the associated set of strings

L1 ◦ L2 = {w ∈ Σ∗ | w = uv for some strings u ∈ L1 and v ∈ L2}

In class, we discussed how extrapolating the construction that we used to prove that the
class of regular languages is closed under set-wise concategation by drawing spontaneous
transitions from the accepting states in the first machine to the start state of the second
machine doesn’t work. Use the example of M1 and N1 to prove this by showing that

L(M1) ◦ L(N)

is not the language recognized by the machine results from taking the two machines M1

and N , setting the start state of M1 to be the start state of the new machine, setting
the set of accepting states of N to be the set of accepting states of the new machine,
and drawing spontaneous arrows from the accepting states of M1 to the start state of
N .

iv. (Graded for completeness) Describe the language recognized by the machine that results
from taking the two machines M2 and N , setting the start state of M2 to be the
start state of the new machine, setting the set of accepting states of N to be the set
of accepting states of the new machine, and drawing spontaneous arrows from the
accepting states of M2 to the start state of N . Use this description to explain why
we used the construction of M2 from M1 and how this construction could be used in a
proof of the closure of the class of context-free languages under set-wise concatenation.

3. Turing machines (12 points):

Consider the Turing machine T over the input alphabet Σ = {0, 1} with the state diagram below
(the tape alphabet is Γ = {0, 1, X,□}). Convention: we do not include the node for the reject
state qrej and any missing transitions in the state diagram have value (qrej,□, R)

Copyright Mia Minnes, 2024, Version December 7, 2024 (5)

q0start

q1 q2

q3 q4

q5

q6

qacc

0, 1 → R

0, 1 → R

0 → X,R

1 → X,R

□ → L

□ → L

0, 1 → X,L

0, 1 → X,L

0 → X,R

1 → X,R

(a) (Graded for correctness) Specify an example string w1 of length 4 over Σ that is accepted
by this Turing machine, or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the accepting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

To describe a computation of a Turing machine, include the contents of the tape, the state
of the machine, and the location of the read/write head at each step in the computation.

Hint: In class we’ve drawn pictures to represent the configuration of the machine at each
step in a computation. You may do so or you may choose to describe these configurations
in words.

(b) (Graded for correctness) Specify an example string w2 of length 3 over Σ that is rejected
by this Turing machine or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the rejecting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

(c) (Graded for correctness) Specify an example string w3 of length 2 over Σ on which the
computation of this Turing machine is never halts or explain why there is no such example.
A complete solution will include either (1) a precise and clear description of your example
string and a precise and clear description of the looping (non-halting) computation of the
Turing machine on this string or (2) a sufficiently general and correct argument why there
is no such example, referring back to the relevant definitions.

Note: when a Turing machine does not halt on a given input string, we say that it loops
on that string.

4. Implementation-level descriptions of deciders and recognizers (9 points):

For this question, consider the alphabet Σ = {a, b, c}.

Copyright Mia Minnes, 2024, Version December 7, 2024 (6)

(a) (Graded for correctness) Give an example of an infinite language over Σ (that is not Σ∗)
and give two different Turing machines that recognize it: one that is a decider and one
that is not. A complete solution will include a precise definition for your example language,
along with both a state diagram and an implementation-level description of each Turing
machines, along with a brief explanation of why each of them recognizes the language and
why one is a decider and there other is not.

(b) (Graded for completeness) True or false: There is a Turing machine that is not a decider
that recognizes the empty set. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and a
justification for why it’s not a decider and why it does not accept any strings, or a complete
and correct justification for why there is no such Turing machine.

(c) (Graded for completeness) True or false: There is a Turing machine that is not a decider that
recognizes the set of all string Σ∗. A complete solution will include a witness Turing machine
(given by state diagram or implementation-level description or high-level description) and
a justification for why it’s not a decider and why it accept each string over {a, b, c}, or a
complete and correct justification for why there is no such Turing machine.

Copyright Mia Minnes, 2024, Version December 7, 2024 (7)

