
HW1CSE105W25: Homework assignment 1

CSE105W25

Due: January 16th at 5pm, via Gradescope

In this assignment,

You will practice reading and applying the definitions of alphabets, strings, languages, Kleene
star, and regular expressions. You will use regular expressions and relate them to languages.

Resources: To review the topics for this assignment, see the class material from Weeks 0 and
1 and Review Quiz 1. We will post frequently asked questions and our answers to them in a
pinned Piazza post.

Reading and extra practice problems: Sipser Section 0, 1.3. Chapter 0 exercises 0.1, 0.2,
0.3, 0.5, 0.6, 0.9. Chapter 1 exercises 1.19, 1.23.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of

Copyright Mia Minnes, 2025, Version March 25, 2025 (1)

machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw1CSE105W25”.

Assigned questions

1. Strings and languages: finding examples and edge cases (12 points):

(a) (Graded for completeness) 1 Give five (different) example alphabets that are meaningful or
useful to you in some way. Specify them formally, either with roster notation (which means
listing all and only distict elements between { and } and separated by commas) or with
another approach to precisely define all and only the elements of the alphabet.

(b) (Graded for completeness) Give an example of a finite set over an alphabet and an infinite
set over an alphabet. You get to choose the alphabet, and you get to choose the sets.

1This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2025, Version March 25, 2025 (2)

https://www.gradescope.com

The goal is to practice communicating your choices and definitions with clear and precise
notation. One habit that will be useful (for this course, and beyond), is to think of your
response for each question as a well-formed paragraph: include all the information that is
relevant so that your solution is self-contained, and so that each sentence is grammatically
constructed.

(c) (Graded for correctness) 2 Define an alphabet Σ1 and an alphabet Σ2 and a language L1

over Σ1 that is also a language over Σ2 and a language L2 over Σ2 that is not a language
over Σ1. A complete and correct answer will use clear and precise notation (consistent with
the textbook and class notes) and will include a description of why the given example L1 is
a language over both Σ1 and Σ2 and a description of why the given example L2 is a language
over Σ2 and not over Σ1.

2. Regular expressions (20 points):

(a) (Graded for completeness) Give three regular expressions that all describe the set of all
strings over {a, b} that have odd length. Ungraded bonus challenge: Make the expressions
as different as possible!

(b) (Graded for completeness) A friend tells you that each regular expression that has a Kleene
star (∗) describes an infinite language. Are they right? Either help them justify their claim
or give a counterexample to disprove it and explain your counterexample.

(c) (Graded for correctness) For this question, the alphabet is {a, b, c}. A friend is trying to
design a regular expression that describes the set of all strings over this alphabet that end
in c. Classify each of the following attempts as

• Correct. Explain why.

• Error Type 1: Incorrect, because (even though each string that is in the language
described by the regular expression ends in c) there is a string that ends in c that is
not in the language described by the regular expression. Give this example string and
explain why it proves we’re in this case.

• Error Type 2: Incorrect, because (even though each string that ends in c is in the
language described by the regular expression), there is a string in the language described
by the regular expression that does not end in c. Give this example string and explain
why it proves we’re in this case.

• Error Type 3: Incorrect, because there are two counterexample strings, one which is
a string that ends in c that is not in the language described by the regular expression
and one which is in the language described by the regular expression but does not end
in c.Give both example strings and describe why each has the given property.

2This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (3)

Worked example for reference: Consider the regular expression (a ∪ b ∪ c)∗. This regular
expression has Error Type 2 because it describes the set of all strings over {a, b, c}, so
even though each string that ends in c is in this language, there is an example, say ab that
is a string in the language described by the regular expression (because we consider the
string formed as a result of the Kleene star operation which has 2 slots and where the first
slot matches the a in a ∪ b ∪ c and the second slot matches b in a ∪ b ∪ c) but does not end
in c (it ends in b).

i. The regular expression is
(a ∪ b)∗ ◦ c

ii. The regular expression is
(a ◦ b ◦ c)∗

iii. The regular expression is
a∗c ∪ b∗c ∪ c∗c

3. Functions over languages (18 points):

For each language L over an alphabet Σ, we have the associated sets of strings (also over Σ)

L∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L}

and
SUBSTRING(L) = {w ∈ Σ∗ | there exist x, y ∈ Σ∗ such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗ | w = uv for some strings u ∈ L and v ∈ Σ∗}

Also, recall the set operations union and intersection: for any sets X and Y

X ∪ Y = {w | w ∈ X or w ∈ Y }

X ∩ Y = {w | w ∈ X and w ∈ Y }

(a) (Graded for completeness) Specify an example language A over {0, 1} such that

SUBSTRING(A) = EXTEND(A)

or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language A and a precise and clear description
of the result of computing SUBSTRING(A), EXTEND(A) (using the given definitions)
to justify this description and to justify the set equality, or (2) a sufficiently general and
correct argument why there is no such example, referring back to the relevant definitions.

(b) (Graded for correctness) Specify an example language B over {0, 1} such that

SUBSTRING(B) ∩ EXTEND(B) = {ε}

Copyright Mia Minnes, 2025, Version March 25, 2025 (4)

and
SUBSTRING(B) ∪ EXTEND(B) = {0, 1}∗

or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language B and a precise and clear description
of the result of computing SUBSTRING(B), EXTEND(B) (using the given definitions)
to justify this description and to justify the set equality with {ε} and {0, 1}∗ (respectively),
or (2) a sufficiently general and correct argument why there is no such example, referring
back to the relevant definitions.

(c) (Graded for correctness) Specify an example infinite language C over {0, 1} such that

SUBSTRING(C) ̸= {0, 1}∗

and
SUBSTRING(C) = C∗

or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language C and a precise and clear description
of the result of computing SUBSTRING(C), C∗ (using the given definitions) to justify
this description and to justify the set nonequality claims, or (2) a sufficiently general and
correct argument why there is no such example, referring back to the relevant definitions.

(d) (Graded for correctness) Specify an example finite language D over {0, 1} such that

EXTEND(D) ̸= {0, 1}∗

and
EXTEND(D) = D∗

or explain why there is no such example. A complete solution will include either (1) a
precise and clear description of your example language D and a precise and clear description
of the result of computing EXTEND(D), D∗ (using the given definitions) to justify this
description and to justify the set nonequality claims, or (2) a sufficiently general and correct
argument why there is no such example, referring back to the relevant definitions.

Copyright Mia Minnes, 2025, Version March 25, 2025 (5)

HW2CSE105W25: Homework assignment 2 Due: January 30th at 5pm, via Gradescope

In this assignment,

You will practice designing multiple representations of regular languages and working with gen-
eral constructions of automata to demonstrate the richness of the class of regular languages.

Resources: To review the topics for this assignment, see the class material from Week 2 and
Week 3. We will post frequently asked questions and our answers to them in a pinned Piazza
post.

Reading and extra practice problems: Sipser Section 1.1, 1.2, 1.3. Chapter 1 exercises 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.20, 1.21, 1.22, 1.23.
Chapter 1 problem 1.31, 1.36, 1.37.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework

Copyright Mia Minnes, 2025, Version March 25, 2025 (6)

is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw2CSE105W25”.

Assigned questions

1. Finite automata (10 points): Consider the finite automaton M = (Q,Σ, δ, q0, F) whose
state diagram is depicted below

q0start

q1 q2 q3

q4

b

a

b

a b

a

a, b

a, b

(a) (Graded for completeness) 3 Write the formal definition of this automaton. In other words,
give the five defining parameters Q, Σ, δ, q0, F so that they are consistent with the state
diagram of M .

(b) (Graded for correctness) 4 Give a regular expression R so that L(R) = L(M). In other
words, we want a regular expression that describes the language recognized by this finite

3This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

4This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using

Copyright Mia Minnes, 2025, Version March 25, 2025 (7)

https://www.gradescope.com

automaton. Justify your answer by referring to the definition of the semantics of regular
expressions and computations of finite automata. Include an explanation for why each
string in L(R) is accepted by the finite automaton and for why each string not in L(R) is
rejected by the finite automaton.

Ungraded bonus: can you find more than one such regular expression?

(c) (Graded for completeness) Keeping the same set of states Q, input alphabet Σ, same start
state q0, and same transition function δ, choose a new set of accepting states Fnew1 so
that the new finite automaton M1 = (Q,Σ, δ, q0, Fnew1) that results recognizes a proper
superset of L(M), or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your choice of Fnew1 and a precise and
clear explanation of why every string that is accepted by M is also accepted by M1 and
an example of a string that is accepted by M1 and is rejected by M ; or (2) a sufficiently
general and correct argument why there is no such example, referring back to the relevant
definitions.

(d) (Graded for correctness) Keeping the same set of states Q, input alphabet Σ, same start
state q0, and same transition function δ, choose a new set of accepting states Fnew2 so that
the new finite automaton M2 = (Q,Σ, δ, q0, Fnew2) that results recognizes a nonempty
proper subset of L(M), or explain why there is no such example. A complete solution
will include either (1) a precise and clear description of your choice of Fnew2 and an example
string accepted by M2 and a precise and clear explanation of why every string that is
accepted by M2 is also accepted by M and an example of a string that is accepted by M
and is rejected by M2; or (2) a sufficiently general and correct argument why there is no
such example, referring back to the relevant definitions.

2. Automata design (12 points): As background to this question, recall that integers can be
represented using base b expansions, for any convenient choice of base b. The precise definition
is: for b an integer greater than 1 and n a positive integer, the base b expansion of n is defined
to be

(ak−1 · · · a1a0)b
where k is a positive integer, a0, a1, . . . , ak−1 are nonnegative integers less than b, ak−1 ̸= 0, and

n =
k−1∑
i=0

aib
i

Notice: The base b expansion of a positive integer n is a string over the alphabet {x ∈ Z | 0 ≤
x < b} whose leftmost character is nonzero.

An important property of base b expansions of integers is that, for each integer b greater than 1,
each positive integer n = (ak−1 · · · a1a0)b, and each nonnegative integer a less than b,

bn+ a = (ak−1 · · · a1a0a)b
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (8)

In other words, shifting the base b expansion to the left results in multiplying the integer value
by the base. In this question we’ll explore building deterministic finite automata that recognize
languages that correspond to useful sets of integers.

(a) (Graded for completeness) Design a DFA that recognizes the set of binary (base 2) ex-
pansions of positive integers that are powers of 2. A complete solution will include the
state diagram of your DFA and a brief justification of your construction by explaining the
role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

Hints: (1) A power of 2 is an integer x that can be written as 2y for some nonnegative
integer y, (2) the DFA should accept the strings 100, 10 and 100000 and should reject the
strings 010, 1101, and ε (can you see why?).

(b) (Graded for correctness) Design a DFA that recognizes the set of binary (base 2) expansions
of positive integers that are less than 10. Your DFA must use fewer than ten states. A
complete solution will include the state diagram of your DFA and a brief justification of
your construction by explaining the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

(c) (Graded for completeness) Find a positive integer B greater than 1 so that there is a DFA
that recognizes the set of base B expansions of positive integers that are less than 10 and
it uses as few states as possible. A complete solution will include the state diagram of your
DFA and a brief justification of your choice of base.

Hint: sometimes rewriting the defining membership condition for a set in different ways
helps us find alternate representations of that set.

3. Nondeterminism (15 points): For this question, the alphabet is {a, b, c}.

(a) (Graded for completeness) Design a NFA that recognizes the language

L1 = {w ∈ {a, b, c}∗ | w starts with a and ends with a}

A complete solution will include the state diagram of your NFA and a brief justification of
your construction that explains the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

(b) (Graded for correctness) Design a NFA that recognizes the language

L2 = {w ∈ {a, b, c}∗ | w has no consecutive repeated characters}

For example, the empty string, a, bac, and abca are each elements of this language but aa
and abb and abbc are not elements of this language.

A complete solution will include the state diagram of your NFA and a brief justification of
your construction that explains the role each state plays in the machine, as well as a brief
justification about how the strings accepted and rejected by the machine connect to the
specified language.

Copyright Mia Minnes, 2025, Version March 25, 2025 (9)

(c) (Graded for completeness) Consider the language

L1 ∪ L2 = {w ∈ {a, b, c}∗ | w starts with a and ends with a

or has no consecutive repeated characters}

Give at least two representations of this language among the following:

• A regular expression that describes L1 ∪ L2

• A DFA that recognizes L1 ∪ L2

• A NFA that recognizes L1 ∪ L2

You can design your automata directly or use the constructions from class and chapter 1 in
the book to build these automata from automata for the simpler languages.

A complete solution will include at least two of the representations as well as a brief justi-
fication of each construction.

(d) (Graded for completeness) Consider the language

L1 ∩ L2 = {w ∈ {a, b, c}∗ | w starts with a and ends with a

and has no consecutive repeated characters}

Give at least two representations of this language among the following:

• A regular expression that describes L1 ∩ L2

• A DFA that recognizes L1 ∩ L2

• A NFA that recognizes L1 ∩ L2

You can design your automata directly or use the constructions from class and chapter 1 in
the book to build these automata from automata for the simpler languages.

A complete solution will include at least two of the representations as well as a brief justi-
fication of each construction.

4. General constructions (13 points): In this question, you’ll practice working with formal
general constructions for automata and translating between state diagrams and formal defini-
tions.

Recall the definitions of operations we’ve talked about that produce new languages from old: for
each language L over an alphabet Σ, we have the associated sets of strings (also over Σ)

L∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L}

and
SUBSTRING(L) = {w ∈ Σ∗ | there exist x, y ∈ Σ∗ such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗ | w = uv for some strings u ∈ L and v ∈ Σ∗}

Also, recall the set operations union and intersection: for any sets X and Y

X ∪ Y = {w | w ∈ X or w ∈ Y }

Copyright Mia Minnes, 2025, Version March 25, 2025 (10)

X ∩ Y = {w | w ∈ X and w ∈ Y }

Let M1 = (Q1,Σ, δ1, q1, F1) and M2 = (Q2,Σ, δ2, q2, F2) be DFA.

For simplicity, assume that Q1 ∩Q2 = ∅ and that q0 /∈ Q1 ∪Q2.

Consider the following definitions of new automata parameterized by these DFA:

• The NFA Nα = (Q1 ∪Q2 ∪ {q0},Σ, δα, q0, F1 ∪ F2) with the transition function given by

δα((q, x)) =



{q1, q2} if q = q0, x = ε

∅ if q = q0, x ∈ Σ

{δ1((q, x))} if q ∈ Q1, x ∈ Σ

{δ2((q, x))} if q ∈ Q2, x ∈ Σ

∅ if q ∈ Q1 ∪Q2, x = ε

• The NFA Nβ = (Q1 ×Q2,Σ, δβ, (q1, q2), F1 × F2) with the transition function given by

δβ(((r, s) , x)) = {(δ1((r, x)), δ2((s, x)))}

and
δβ(((r, s) , ε)) = ∅

for r ∈ Q1, s ∈ Q2, x ∈ Σ.

• The NFA Nγ = (Q1 ∪ {q0},Σ, δγ, q0, {q ∈ Q1 | ∃w ∈ Σ∗(δ∗1((q, w)) ∈ F1)}), and

δγ((q, a)) =


{δ1((q, a))} if q ∈ Q1, a ∈ Σ

{q′ ∈ Q1 | ∃w ∈ Σ∗(δ∗1((q1, w)) = q′)} if q = q0, a = ε

∅ if q = q0, a ∈ Σ

∅ if q ∈ Q1, a = ε

Hint: the notation δ∗1 refers to the iterated transition function.

(a) (Graded for correctness) Illustrate the construction of Nα by defining a specific pair of
example DFAs M1 and M2 and applying the construction above to create the new NFA Nα.
Your example DFA should

• Have the same input alphabet as each other,

• Each have exactly three states (all reachable from the respective start state),

• Accept at least one string and reject at least one string,

• Recognize different languages from one another, and

• Not have any states labelled q0, and

• Not share any state labels.

Copyright Mia Minnes, 2025, Version March 25, 2025 (11)

Apply the construction above to create the new NFA. A complete submission will include
the state diagrams of your example DFA M1 and M2 and the state diagram of the NFA Nα

resulting from this construction and a precise and clear description of L(M1) and L(M2)
and L(Nα), justified by explaining the role each state plays in the machine, as well as a
brief justification about how the strings accepted and rejected by the machine connect to
the language.

(b) (Graded for correctness) Illustrate the construction of Nβ by defining a specific pair of
example DFAs M1 and M2 and applying the construction above to create the new NFA Nβ.
Your example DFA should

• Have the same input alphabet as each other,

• Each have exactly two states (all reachable from the respective start state),

• Accept at least one string and reject at least one string,

• Recognize different languages from one another, and

• Not have any states labelled q0, and

• Not share any state labels.

Apply the construction above to create the new NFA. A complete submission will include
the state diagrams of your example DFA M1 and M2 and the state diagram of the NFA Nβ

resulting from this construction and a precise and clear description of L(M1) and L(M2)
and L(Nβ), justified by explaining the role each state plays in the machine, as well as a
brief justification about how the strings accepted and rejected by the machine connect to
the language.

(c) (Graded for correctness) Illustrate the construction of Nγ by defining a specific example
DFA M1 and applying the construction above to create the new NFA Nγ. Your example
DFA should

• Have exactly four states (all reachable from the respective start state),

• Accept at least one string and reject at least one string,

• Not have any states labelled q0.

Apply the construction above to create the new NFA. A complete submission will include
the state diagram of your example DFA M1 and the state diagram of the NFA Nγ resulting
from this construction and a precise and clear description of L(M1) and L(Nγ), justified
by explaining the role each state plays in the machine, as well as a brief justification about
how the strings accepted and rejected by the machine connect to the language.

(d) (Graded for completeness) If possible, associate each construction above with one of the
operations whose definitions we recalled at the start of the question. For example, is it
the case that (for all choices of DFA M1 and M2) L(Nα) = L(M1) ∪ L(M2)? or L(Nα) =
L(M1) ∩ L(M2)? etc.

A complete solution will consider each of the constructions Nα, Nβ, Nγ in turn, and for
each, either name the operation that’s associated with the construction (and explain why)
or explain why none of the operations mentioned is associated with the construction.

Copyright Mia Minnes, 2025, Version March 25, 2025 (12)

HW3CSE105W25: Homework assignment 3 Due: February 6th at 5pm, via Gradescope

In this assignment,

You will demonstrate the richness of the class of regular languages, as well as its boundaries, and
explore push-down automata and their design.

Resources: To review the topics for this assignment, see the class material from Week 3 and
Week 4. We will post frequently asked questions and our answers to them in a pinned Piazza
post.

Reading and extra practice problems: Sipser Chapter 1 and Section 2.2. Chapter 1 exercises
1.28, 1.29, 1.30. Chapter 1 problem 1.53, 1.54, 1.55. Chapter 2 exercises 2.7, 2.10.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while

Copyright Mia Minnes, 2025, Version March 25, 2025 (13)

getting to know and learn from your classmates.

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw3CSE105W25”.

Assigned questions

1. Static analysis (10 points): In software engineering, static analysis is an approach to debug-
ging and testing where the properties of a piece of code are inferred without actually running
it. In the context of finite automata, we can think of static analysis as the process of inferring
properties of the language recognized by a finite automaton from properties of the graph under-
lying its state diagram. The Pumping Lemma is one example of static analysis. In this question,
you’ll explore other examples of how properties of the graph underlying the state diagram of a
machine can give us information about the language recognized by the machine.

(a) (Graded for completeness) 5 Suppose you are given an NFA N0 over an alphabet Σ and each
accepting state in N0 is not reachable from the start state of N0. What can you conclude
about the language of the NFA?

(b) (Graded for correctness) 6 Prove or disprove: For any alphabet Σ and any DFA M over Σ,
if every state in M is accepting then L(M) = Σ∗. A complete answer will clearly indicate
whether the statement is true or false and then will justify with a complete and correct
argument.

5This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

6This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (14)

https://www.gradescope.com

(c) (Graded for correctness) Prove or disprove: For any alphabet Σ and any NFA N over Σ,
if every state in N is accepting then L(N) = Σ∗. A complete answer will clearly indicate
whether the statement is true or false and then will justify with a complete and correct
argument.

2. Multiple representations (12 points):

(a) Consider the languageA1 = {uw | u and w are strings over {0, 1} and have the same length}
and the following argument.

“Proof” that A1 is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for A1.
Choose s to be the string 1p0p, which is in A1 because we can choose u = 1p and
w = 0p which each have length p. Since s is in A1 and has length greater than or
equal to p, if p were to be a pumping length for A1, s ought to be pump’able. That
is, there should be a way of dividing s into parts x, y, z where s = xyz, |y| > 0,
|xy| ≤ p, and for each i ≥ 0, xyiz ∈ A1. Suppose x, y, z are such that s = xyz,
|y| > 0 and |xy| ≤ p. Since the first p letters of s are all 1 and |xy| ≤ p, we know
that x and y are made up of all 1s. If we let i = 2, we get a string xyiz that is
not in A1 because repeating y twice adds 1s to u but not to w, and strings in A1

are required to have u and w be the same length. Thus, s is not pumpable (even
though it should have been if p were to be a pumping length) and so p is not a
pumping length for A1. Since p was arbitrary, we have demonstrated that A1 has
no pumping length. By the Pumping Lemma, this implies that A1 is nonregular.

i. (Graded for completeness) Find the (first and/or most significant) logical error in the
“proof” above and describe why it’s wrong.

ii. (Graded for completeness) Prove that the set A1 is actually regular (by finding a regular
expression that describes it or a DFA/NFA that recognizes it, and justifying why) or
fix the proof so that it is logically sound.

(b) Consider the languageA2 = {u1w | u and w are strings over {0, 1} and have the same length}
and the following argument.

“Proof” that A2 is not regular using the Pumping Lemma: Let p be an arbitrary
positive integer. We will show that p is not a pumping length for A2.
Choose s to be the string 1p+10p, which is in A2 because we can choose u = 1p and
w = 0p which each have length p. Since s is in A2 and has length greater than or
equal to p, if p were to be a pumping length for A2, s ought to be pump’able. That
is, there should be a way of dividing s into parts x, y, z where s = xyz, |y| > 0,
|xy| ≤ p, and for each i ≥ 0, xyiz ∈ A2. When x = ε and y = 1p+1 and z = 0p, we
have satisfied that s = xyz, |y| > 0 (because p is positive) and |xy| ≤ p. If we let
i = 0, we get the string xyiz = 0p that is not in A2 because its middle symbol is
a 0, not a 1. Thus, s is not pumpable (even though it should have been if p were
to be a pumping length) and so p is not a pumping length for A2. Since p was
arbitrary, we have demonstrated that A2 has no pumping length. By the Pumping
Lemma, this implies that A2 is nonregular.

Copyright Mia Minnes, 2025, Version March 25, 2025 (15)

i. (Graded for completeness) Find the (first and/or most significant) logical error in the
“proof” above and describe why it’s wrong.

ii. (Graded for completeness) Prove that the set A2 is actually regular (by finding a regular
expression that describes it or a DFA/NFA that recognizes it, and justifying why) or
fix the proof so that it is logically sound.

3. Pumping (10 points):

(a) (Graded for correctness) Give an example of a language over the alphabet {a, b} that has
cardinality 3 and for which 5 is a pumping length and 4 is not a pumping length. Is this
language regular? A complete solution will give (1) a clear and precise description of the
language, (2) a justification for why 5 is a pumping length, (3) a justification for why 4 is
not a pumping length, (4) a correct and justified answer to whether the language is regular.

(b) (Graded for completeness) In class and in the reading so far, we’ve seen the following ex-
amples of nonregular sets:

{0n1n | n ≥ 0}

{0n1n | n ≥ 2}

{0n1m | 0 ≤ n ≤ m}

{0n1m | 0 ≤ m ≤ n}

{0i12i | 0 ≤ i}

{0i1i+1 | 0 ≤ i}

{0n1m0n | n,m ≥ 0}

{w ∈ {0, 1}∗ | w = wR}

{wwR | w ∈ {0, 1}∗}

Modify one of these sets in some way and use the Pumping Lemma to prove that the
resulting set is still nonregular.

4. Regular and nonregular languages (12 points): In Week 2’s review quiz, we saw the defi-
nition that a set X is said to be closed under an operation if, for any elements in X, applying
to them gives an element in X. For example, the set of integers is closed under multiplication
because if we take any two integers, their product is also an integer .

Recall the definitions of operations we’ve talked about that produce new languages from old: for
each language L over an alphabet Σ, we have the associated sets of strings (also over Σ)

L∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L}

and
SUBSTRING(L) = {w ∈ Σ∗ | there exist x, y ∈ Σ∗ such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗ | w = uv for some strings u ∈ L and v ∈ Σ∗}

Also, recall the set operations union and intersection: for any sets X and Y

X ∪ Y = {w | w ∈ X or w ∈ Y }

X ∩ Y = {w | w ∈ X and w ∈ Y }

Copyright Mia Minnes, 2025, Version March 25, 2025 (16)

(a) (Graded for correctness) Use the general constructions that we developed to prove the closure
of the class of regular languages under various operations to produce the state diagram of
a NFA that recognizes the language

(SUBSTRING({0, 01, 111}))∗

Hint: Question 4 from Homework 2 might be helpful.

For full credit, submit (1) a state diagram of an NFA that recognizes {0, 01, 111}, (2) a state
diagram of an NFA that recognizes SUBSTRING({0, 01, 111}), and (3) a state diagram
of an NFA that recognizes (SUBSTRING({0, 01, 111}))∗, and a brief justification of each
state diagram that references the language being recognized or the general constructions
being used.

(b) (Graded for completeness) Prove that the class of nonregular languages over {0, 1} is not
closed under the SUBSTRING operation by giving an example language A that is nonreg-
ular but for which SUBSTRING(A) is regular. A complete solution will give (1) a clear
and precise description of the language, (2) a justification for why it is nonregular (either
by proving this directly or by referring to specific examples from the class or textbook), (3)
a description of the result of applying the SUBSTRING operation to the language, and
(4) a justification for why this resulting language is regular.

(c) (Graded for correctness) Prove that the class of nonregular languages over {0, 1} is not
closed under the EXTEND operation by giving an example language B that is nonregular
but for which EXTEND(B) is regular. A complete solution will give (1) a clear and precise
description of the language, (2) a justification for why it is nonregular (either by proving this
directly or by referring to specific examples from the class or textbook), (3) a description
of the result of applying the EXTEND operation to the language, and (4) a justification
for why this resulting language is regular.

(d) (Graded for completeness) Prove that the class of nonregular languages over {0, 1} is not
closed under the Kleene star operation by giving an example language C that is nonregular
but for which C∗ is regular. A complete solution will give (1) a clear and precise description
of the language, (2) a justification for why it is nonregular (either by proving this directly
or by referring to specific examples from the class or textbook), (3) a description of the
result of applying the Kleene star operation to the language, and (4) a justification for why
this resulting language is regular.

5. Regular and nonregular languages and Push-down automata (PDA) (6 points): On
page 7 of the week 4 notes, we have the following list of languages over the alphabet {a, b}

{anbn | 0 ≤ n ≤ 5} {bnan | n ≥ 2} {ambn | 0 ≤ m ≤ n}
{ambn | m ≥ n+ 3, n ≥ 0} {bman | m ≥ 1, n ≥ 3}
{w ∈ {a, b}∗ | w = wR} {wwR | w ∈ {a, b}∗}

(a) (Graded for completeness) Pick one of the regular languages and design a regular expression
that describes it and a DFA that recognizes it. Briefly justify your regular expression

Copyright Mia Minnes, 2025, Version March 25, 2025 (17)

by connecting the subexpressions of it to the intended language and referencing relevant
definitions. Briefly justify your DFA design by explaining the role each state plays in the
machine, as well as a brief justification about how the strings accepted and rejected by the
machine connect to the specified language.

(b) (Graded for completeness) Pick one of the nonregular languages and design a PDA that
recognizes it. Draw the state diagram of your PDA. Briefly justify your design by explaining
the role each state plays in the machine, as well as a brief justification about how the strings
accepted and rejected by the machine connect to the specified language.

Copyright Mia Minnes, 2025, Version March 25, 2025 (18)

HW4CSE105W25: Homework assignment 4 Due: February 20th at 5pm, via Gradescope

In this assignment,

You will work with context-free languages and their representations. You will also practice
analyzing, designing, and working with Turing machines. You will explore recognizable and
decidable languages.

Resources: To review the topics for this assignment, see the class material from Weeks 5 and
6. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapters 2 and 3. Chapter 2 exercises 2.1,
2.2, 2.3, 2.4, 2.5, 2.6, 2.9, 2.11, 2.12, 2.13, 2.16, 2.17. Chapter 3 exercises 3.1, 3.2, 3.5, 3.8.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while

Copyright Mia Minnes, 2025, Version March 25, 2025 (19)

getting to know and learn from your classmates.

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw4CSE105W25”.

Assigned questions

1. Regular and nonregular languages and context-free grammars (CFG) (6 points):
On page 7 of the week 4 notes, we have the following list of languages over the alphabet {a, b}

{anbn | 0 ≤ n ≤ 5} {bnan | n ≥ 2} {ambn | 0 ≤ m ≤ n}
{ambn | m ≥ n+ 3, n ≥ 0} {bman | m ≥ 1, n ≥ 3}
{w ∈ {a, b}∗ | w = wR} {wwR | w ∈ {a, b}∗}

(a) (Graded for completeness) 7 Pick one of the regular languages and design a context-free
grammar that generates it. Briefly justify your grammar by describing the role of each of
the rules and connecting it to the intended language and referencing relevant definitions.

(b) (Graded for completeness) Pick one of the nonregular languages and design a context-free
grammar that generates it. Briefly justify your grammar by describing the role of each of
the rules and connecting it to the intended language and referencing relevant definitions.

2. General constructions for context-free languages (15 points):

In class in week 5, we described several general constructions with PDAs and CFGs, leaving their
details to homework. In this question, we’ll fill in these details. The first constructions help us
prove that the class of regular languages is a subset of the class of context-free languages. The
other construction allows us to make simplifying assumptions about PDAs recognizing languages.

7This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2025, Version March 25, 2025 (20)

https://www.gradescope.com

(a) (Graded for completeness) When we first introduced PDAs we observed that any NFA can
be transformed to a PDA by not using the stack of the PDA at all. Suppose a friend gives
you the following construction to formalize this transformation:

Given a NFA N = (Q,Σ, δN , q0, F) we define a PDA M with L(M) = L(N) by
letting M = (Q,Σ,Σ, δ, q0, F) where δ((q, a, b)) = δN((q, a)) for each q ∈ Q,
a ∈ Σε and b ∈ Σε.

For each of the six defining parameters for the PDA, explain whether it’s defined correctly
or not. If it is not defined correctly, explain why not and give a new definition for this
parameter that corrects the mistake.

(b) (Graded for correctness) 8 In the book on page 107, the top paragraph describes a procedure
for converting DFAs to CFGs:

You can convert any DFA into an equivalent CFG as follows. Make a variable Ri

for each state qi of the DFA. Add the rule Ri → aRj to the CFG if δ(qi, a) = qj
is a transition in the DFA. Add the rule Ri → ε if qi is an accept state of the
DFA. Make R0 the start variable ofthe grammar, where q0 is the start state of the
machine. Verify on your own that the resulting CFG generates the same language
that the DFA recognizes.

Use this construction to get a context-free grammar generating the language

{w ∈ {a, b}∗ | w has at least one a and does not end in bb}

by (1) designing a DFA that recognizes this language and then (2) applying the construction
from the book to convert the DFA to an equivalent CFG. A complete and correct submission
will include the state diagram of the DFA, a brief justification of why it recognizes the
language, and then the complete and precise definition of the CFG that results from applying
the construction from the book to this DFA. Ungraded bonus: take a sample string in the
language and see how the computation of the DFA on this string translates to a derivation
in your grammar.

(c) Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) be a PDA and let qnew, rnew, snew be three fresh state labels
(i.e. Q1∩{qnew, rnew, snew} = ∅) and let # be a fresh stack symbol (i.e. # /∈ Γ1). We define
the PDA M2 as

(Q2,Σ,Γ2, δ2, qnew, {snew})

with Q2 = Q1 ∪{qnew, rnew, snew} and Γ2 = Γ1 ∪{#} and δ2 : Q2×Σε×Γ2ε → P(Q2×Γ2ε)

8This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (21)

given by

δ2((q, a, b)) =



{(q1,#)} if q = qnew, a = ε, b = ε

δ1((q, a, b)) if q ∈ Q1 \ F1, a ∈ Σε, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a ∈ Σ, b ∈ Γ1ε

δ1((q, a, b)) if q ∈ F1, a = ε, b ∈ Γ1

δ1((q, a, b)) ∪ {(rnew, ε)} if q ∈ F1, a = ε, b = ε

{(rnew, ε)} if q = rnew, a = ε, b ∈ Γ1

{(snew, ε)} if q = rnew, a = ε, b = #

∅ otherwise

for each q ∈ Q2, a ∈ Σε, and b ∈ Γ2ε.

In this question, we’ll apply this construction for a specific PDA and use this example to
extrapolate the effect of this construction.

i. (Graded for correctness) Consider the PDA M1 with input alphabet {0, 1} and stack
alphabet {0, 1, $} whose state diagram is

s1start s2 s3 s4 s5
ε, ε; $

1, ε; 0

ε, ε; ε

0, 0; ε

0, $; 0 0, ε; 0

Draw the state diagram for the PDA M2 that results from applying the construction
to M1. Also, give an example string of length 4 that is accepted by both M1 and M2

and justify your choice by describing an accepting computation for each of the PDAs
on your input string.

ii. (Graded for completeness) Compare L(M1) and L(M2). Are these sets equal? Does
your answer depend on the specific choice of M1? Why or why not?

iii. (Graded for completeness) Consider the PDA N with input alphabet {0, 1} and stack
alphabet {0, 1} whose state diagram is

q1start q2

0, ε; 0

1, 0; ε

1, 0; ε

Remember that the definition of set-wise concatenation is: for languages L1, L2 over
the alphabet Σ, we have the associated set of strings

L1 ◦ L2 = {w ∈ Σ∗ | w = uv for some strings u ∈ L1 and v ∈ L2}

In class, we discussed how extrapolating the construction that we used to prove that the
class of regular languages is closed under set-wise concatenation by drawing spontaneous
transitions from the accepting states in the first machine to the start state of the second
machine doesn’t work. Use the example of M1 and N to prove this by showing that

L(M1) ◦ L(N)

Copyright Mia Minnes, 2025, Version March 25, 2025 (22)

is not the language recognized by the machine results from taking the two machines M1

and N , setting the start state of M1 to be the start state of the new machine, setting
the set of accepting states of N to be the set of accepting states of the new machine,
and drawing spontaneous arrows from the accepting states of M1 to the start state of
N . Then, describe the language recognized by the machine that results from taking
the two machines M2 and N , setting the start state of M2 to be the start state of the
new machine, setting the set of accepting states of N to be the set of accepting states
of the new machine, and drawing spontaneous arrows from the accepting states of M2

to the start state of N . Use this description to explain why we used the construction
of M2 from M1 and how this construction could be used in a proof of the closure of the
class of context-free languages under set-wise concatenation.
A complete response will give an example string that witnesses that L(M1) ◦ L(N) is
not equal to the language recognized by the PDA resulting from the wrong construction
(described above) and the state diagram of the PDA that results from applying that
construction to M2 and N (instead of M1), with a brief justification about why that
approach works.

3. Turing machines (9 points):

Consider the Turing machine T over the input alphabet Σ = {0, 1} with the state diagram below
(the tape alphabet is Γ = {0, 1, X,□}). Convention: we do not include the node for the reject
state qrej and any missing transitions in the state diagram have value (qrej,□, R)

q0start

q1 q2

q3 q4

q5

q6

qacc

0, 1 → R

0, 1 → L

0 → X,R

1 → R

□ → L

□ → L

0, 1 → X,L

0, 1 → X,L

1 → X,R

0 → X,R

(a) (Graded for correctness) Specify an example string w1 of length 4 over Σ that is accepted
by this Turing machine, or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the accepting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

To describe a computation of a Turing machine, include the contents of the tape, the state
of the machine, and the location of the read/write head at each step in the computation.

Copyright Mia Minnes, 2025, Version March 25, 2025 (23)

Hint: In class we’ve drawn pictures to represent the configuration of the machine at each
step in a computation. You may do so or you may choose to describe these configurations
in words.

(b) (Graded for correctness) Specify an example string w2 of length 3 over Σ that is rejected
by this Turing machine or explain why there is no such example. A complete solution will
include either (1) a precise and clear description of your example string and a precise and
clear description of the rejecting computation of the Turing machine on this string or (2)
a sufficiently general and correct argument why there is no such example, referring back to
the relevant definitions.

(c) (Graded for correctness) Specify an example string w3 of length 3 over Σ on which the
computation of this Turing machine is never halts or explain why there is no such example.
A complete solution will include either (1) a precise and clear description of your example
string and a precise and clear description of the looping (non-halting) computation of the
Turing machine on this string or (2) a sufficiently general and correct argument why there
is no such example, referring back to the relevant definitions.

4. Implementation-level descriptions of deciders and recognizers (12 points): Consider
the language

{aibj | i ≥ 0, j > 1}

over the alphabet {a, b}.

(a) (Graded for correctness) Give an example of a Turing machine that decides this language. A
complete solution will include both a state diagram and an implementation-level description
of this Turing machine, along with a brief explanation of why it recognizes this language,
and why it is a decider.

(b) (Graded for correctness) Give an example of a Turing machine that recognizes but does
not decide this language. A complete solution will include both a state diagram and an
implementation-level description of this Turing machine, along with a brief explanation of
why it recognizes this language, and why it is not a decider.

5. Classifying languages (8 points): Our first example of a more complicated Turing machine
was of a Turing machine that recognized the language {w#w | w ∈ {0, 1}∗} (Figure 3.10 in the
textbook), which we know is not context-free. Let’s call that Turing machine M0. The language

L = {ww | w ∈ {0, 1}∗}

is also not context-free.

(a) (Graded for correctness) Choose an example string of length 2 in L that is in not in {w#w |
w ∈ {0, 1}∗} and describe the computation of the Turing machine M0 on your example
string. Include the contents of the tape, the state of the machine, and the location of the
read/write head at each step in the computation.

Copyright Mia Minnes, 2025, Version March 25, 2025 (24)

(b) (Graded for completeness) Explain why the Turing machine from the textbook and class
that recognized {w#w | w ∈ {0, 1}∗} does not recognize {ww | w ∈ {0, 1}∗}. Use your
example to explain why M0 doesn’t recognize L.

(c) (Graded for completeness) Explain how you would change M0 to get a new Turing machine
that does recognize L. Describe this new Turing machine using both an implementation-
level definition and a state diagram of the Turing machine. You may use all our usual
conventions for state diagrams of Turing machines (we do not include the node for the
reject state qrej and any missing transitions in the state diagram have value (qrej,□, R);
b → R label means b → b, R).

Copyright Mia Minnes, 2025, Version March 25, 2025 (25)

HW5CSE105W25: Homework assignment 5 Due: February 27th at 5pm, via Gradescope

In this assignment, You will practice analyzing, designing, and working with Turing machines.
You will use general constructions and specific machines to explore the classes of recognizable
and decidable languages. You will explore various ways to encode machines as strings so that
computational problems can be recognized and solved.

Resources: To review the topics for this assignment, see the class material from Weeks 6, 7,
and 8. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Chapters 3 and 4. Chapter 3 exercises 3.1,
3.2, 3.5, 3.8. Chapter 4 exercises 4.1, 4.2, 4.3, 4.4, 4.5.

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while
getting to know and learn from your classmates.

Copyright Mia Minnes, 2025, Version March 25, 2025 (26)

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw5CSE105W25”.

Assigned questions

1. Equally expressive models (10 points): The Church-Turing Thesis (Sipser p. 183)
says that the informal notion of algorithm is formalized completely and correctly by the formal
definition of a Turing machine. In other words: all reasonably expressive models of computation
are equally expressive with the standard Turing machine. In this question, we will give support
for this thesis by showing that some adaptations of the standard (Chapter 3) Turing machine
model still gives us a new model that is equally expressive.

(a) (Graded for completeness) 9 Let’s define a new machine model, and call it the May-stay
machine. The May-stay machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R, or Stay.

Formally: a May-stay machine is given by the 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject) where Q
is a finite set with q0 ∈ Q and qaccept ∈ Q and qreject ∈ Q and qaccept ̸= qreject, Σ and Γ are
alphabets and Σ ⊆ Γ and □ ∈ Γ and □ /∈ Σ, and the transition function has signature

δ : Q× Γ → Q× Γ× {L,R, S}

The notions of computation and acceptance are analogous to that from Turing machines.

Prove that Turing machines and May-stay machines are equally expressive. A complete
proof will use the formal definitions of the machines.

Hint: Include two directions of implications. First, let M be an arbitrary Turing machine
and prove that there’s a May-stay machine that recognizes the language recognized by M .
Next, let MS be an arbitrary May-stay machine and prove that there’s a Turing machine
that recognizes the language recognized by MS.

9This means you will get full credit so long as your submission demonstrates honest effort to answer the
question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

Copyright Mia Minnes, 2025, Version March 25, 2025 (27)

https://www.gradescope.com

(b) (Graded for correctness) 10 Let’s define a new machine model, and call it the Double-move
machine. The Double-move machine model is the same as the usual Turing machine model,
except that on each transition, the tape head may move L, move R one cell, or move R two
cells. Formally: a Double-move machine is given by the 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject)
where Q is a finite set with q0 ∈ Q and qaccept ∈ Q and qreject ∈ Q and qaccept ̸= qreject, Σ
and Γ are alphabets and Σ ⊆ Γ and □ ∈ Γ and □ /∈ Σ, and the transition function has
signature

δ : Q× Γ → Q× Γ× {L,R, T}
where L means that the read-write head moves to the left one cell (or stays put if it’s at the
leftmost cell already), R means that the read-write head moves one cell to the right , and
T means that the read-write head moves two cells to the right. The notion of computation
and acceptance are analogous to that from Turing machines.

Prove that Turing machines and Double-move machines are equally expressive. A complete
proof will use the formal definitions of the machines.

Hint: Include two directions of implications. First, let M be an arbitrary Turing machine
and prove that there’s a Double-move machine that recognizes the language recognized by
M . Next, let MD be an arbitrary Double-move machine and prove that there’s a Turing
machine that recognizes the language recognized by MD.

(c) (Graded for completeness) In your proofs of equal expressivity in the previous parts of this
question, you proved that a language is recognizable by some Turing machine if and only
if it is recognizable by some May-stay machine or by some Double-move machine. Do your
proofs also prove that a language is decidable by some Turing machine if and only if it
is decidable by some May-stay machine or by some Double-move machine? Justify your
answer.

2. Modifying machines (12 points)

(a) (Graded for correctness) Suppose a friend suggests that the following construction can be
used to prove that the class of decidable languages is closed under intersection.

Construction: given deciders M1 and M2 build the following machine M

M = “On input w :

1. Run M1 on input w.

2. If M1 accepts w, accept.

3. Run M2 on input w.

4. If M2 accepts w, accept.

5. If M2 rejects w, reject.”

10This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (28)

Build a counterexample that could be used to convince your friend that this construction
doesn’t work. A complete counterexample will include (1) a high-level description of M1,
(2) a high-level description of M2, (3) a justification for why they provide a counterexample
(that references the definitions of M , decidable languages, and intersection).

Ungraded bonus: Is it possible to change one line of the construction to make it work?

(b) (Graded for correctness) Suppose a friend suggests that the following construction can be
used to prove that the class of recognizable languages is closed under intersection.

Construction: given Turing machines M1 and M2 build the following machine M ′

M ′ = “On input w :

1. Run M1 on input w.

2. If M1 rejects w, reject.

3. Run M2 on input w.

4. If M2 rejects w, reject.”

Build a counterexample that could be used to convince your friend that this construction
doesn’t work. A complete counterexample will include (1) a high-level description of M1,
(2) a high-level description of M2, (3) a justification for why they provide a counterexample
(that references the definition of M ′, recognizable languages, and intersection).

Ungraded bonus: Is it possible to change one line of the construction to make it work?

3. Closure (12 points):

For each language L over an alphabet Σ, we have the associated sets of strings (also over Σ)

L∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L}

and
SUBSTRING(L) = {w ∈ Σ∗ | there exist x, y ∈ Σ∗ such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗ | w = uv for some strings u ∈ L and v ∈ Σ∗}

(a) (Graded for correctness) Prove whether this Turing machine construction below can or
cannot be used to prove that the class of recognizable languages over Σ is closed under the
Kleene star operation or the SUBSTRING operation or the EXTEND operation.

Suppose M is a Turing machine over the alphabet Σ. Let s1, s2, . . . be a list of all strings
in Σ∗ in string (shortlex) order. We define a new Turing machine by giving its high-level

Copyright Mia Minnes, 2025, Version March 25, 2025 (29)

description as follows:

Ma = “On input w :

1. For n = 1, 2, . . .

2. For j = 1, 2, . . . n

3. For k = 1, 2, . . . , n

4. Run the computation of M on sjwsk for at most n steps

5. If that computation halts and accepts within n steps, accept.

6. Otherwise, continue with the next iteration of this inner loop”

A complete and correct answer will either identify which operation works and give the proof
of correctness why, for any Turing machine M , L(Ma) is equal to the result of applying this
operation to L(M); or give a counterexample (a recognizable set A and a Turing machine
M recognizing A and a description of why L(Ma) where Ma is the result of the construction
applied to M doesn’t equal A∗ and doesn’t equal SUBSTRING(A) and doesn’t equal
EXTEND(A).

(b) (Graded for correctness) Prove whether this Turing machine construction below can or
cannot be used to prove that the class of recognizable languages over Σ is closed under the
Kleene star operation or the SUBSTRING operation or the EXTEND operation.

Suppose M is a Turing machine over the alphabet Σ. Let s1, s2, . . . be a list of all strings
in Σ∗ in string (shortlex) order. We define a new Turing machine by giving its high-level
description as follows:

Mb = “On input w :

1. For n = 1, 2, . . .

2. For j = 0, . . . , |w|
3. Let u be the string consisting of the first j characters of w

4. Run the computation of M on u for at most n steps

5. If that computation halts and accepts within n steps, accept.

6. Otherwise, continue with the next iteration of this inner loop”

A complete and correct answer will either identify which operation works and give the proof
of correctness why, for any Turing machine M , L(Mb) is equal to the result of applying this
operation to L(M); or give a counterexample (a recognizable set B and a Turing machine
M recognizing B and a description of why L(Mb) where Mb is the result of the construction
applied to M doesn’t equal equal B∗ and doesn’t equal SUBSTRING(B) and doesn’t
equal EXTEND(B).

4. Computational problems (8 points): Recall the definitions of some example computational
problems from class

Copyright Mia Minnes, 2025, Version March 25, 2025 (30)

Acceptance problem

. . . for DFA ADFA {⟨B,w⟩ | B is a DFA that accepts input string w}

. . . for NFA ANFA {⟨B,w⟩ | B is a NFA that accepts input string w}

. . . for regular expressions AREX {⟨R,w⟩ | R is a regular expression that generates input string w}

. . . for CFG ACFG {⟨G,w⟩ | G is a context-free grammar that generates input string w}

. . . for PDA APDA {⟨B,w⟩ | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {⟨A⟩ | A is a DFA and L(A) = ∅}

. . . for NFA ENFA {⟨A⟩ | A is a NFA and L(A) = ∅}

. . . for regular expressions EREX {⟨R⟩ | R is a regular expression and L(R) = ∅}

. . . for CFG ECFG {⟨G⟩ | G is a context-free grammar and L(G) = ∅}

. . . for PDA EPDA {⟨A⟩ | A is a PDA and L(A) = ∅}

Language equality testing

. . . for DFA EQDFA {⟨A,B⟩ | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {⟨A,B⟩ | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {⟨R,R′⟩ | R and R′ are regular expressions and L(R) = L(R′)}

. . . for CFG EQCFG {⟨G,G′⟩ | G and G′ are CFGs and L(G) = L(G′)}

. . . for PDA EQPDA {⟨A,B⟩ | A and B are PDAs and L(A) = L(B)}

(a) (Graded for completeness) Pick three of the computational problems above and give exam-
ples (preferably different from the ones we talked about in class) of strings that are in each
of the corresponding languages. Remember to use the notation ⟨· · · ⟩ to denote the string
encoding of relevant objects. Extension, not for credit: Explain why it’s hard to write a
specific string of 0s and 1s and make a claim about membership in one of these sets.

(b) (Graded for completeness) Computational problems can also be defined for Turing machines.
Consider the two high-level descriptions of Turing machines below. Reverse-engineer them
to define the computational problem that is being recognized, where L(MDFA) is the lan-
guage corresponding to this computational problem about DFA and L(MTM) is the language
corresponding to this computational problem about Turing machines. Hint: the computa-
tional problem is not acceptance, language emptiness, or language equality (but is related
to one of them).

Let s1, s2, . . . be a list of all strings in {0, 1}∗ in string (shortlex) order. Consider the

Copyright Mia Minnes, 2025, Version March 25, 2025 (31)

following Turing machines

MDFA = “On input ⟨D⟩ where D is a DFA :

1. for i = 1, 2, 3, . . .

2. Run D on si

3. If it accepts, accept.

4. If it rejects, go to the next iteration of the loop”

and

MTM = “On input ⟨T ⟩ where T is a Turing machine :

1. for i = 1, 2, 3, . . .

2. Run T for i steps on each input s1, s2, . . . , si in turn

3. If T has accepted any of these, accept.

4. Otherwise, go to the next iteration of the loop”

5. Computational problems (8 points):

(a) (Graded for completeness) Prove that the language

{⟨D⟩ | D is an NFA over {0, 1} and D accepts at least 3 strings of length less than 5 }

is decidable.

(b) (Graded for correctness) Prove that the language

{⟨R⟩ | R is a regular expression over {0, 1} and L(R) has infinitely many strings starting with 0}

is decidable.

Copyright Mia Minnes, 2025, Version March 25, 2025 (32)

HW6CSE105W25: Homework assignment 6 Due: March 13, 2025 at 5pm, via Gradescope

In this assignment,

You will practice analyzing, designing, and working with reductions to compare the difficulty
level of computational problems. You will explore various ways to encode machines as strings so
that computational problems can be recognized.

Resources: To review the topics for this assignment, see the class material from Weeks 8 and
9. We will post frequently asked questions and our answers to them in a pinned Piazza post.

Reading and extra practice problems: Sipser Sections 4.2, 5.3, 5.1. Chapter 4 exercises 4.9,
4.12. Chapter 5 exercises 5.4, 5.5, 5.6, 5.7. Chapter 5 problems 5.22, 5.23, 5.24, 5.28

For all HW assignments: Weekly homework may be done individually or in groups of up
to 3 students. You may switch HW partners for different HW assignments. Please ensure
your name(s) and PID(s) are clearly visible on the first page of your homework submission and
then upload the PDF to Gradescope. If working in a group, submit only one submission per
group: one partner uploads the submission through their Gradescope account and then adds the
other group member(s) to the Gradescope submission by selecting their name(s) in the “Add
Group Members” dialog box. You will need to re-add your group member(s) every time you
resubmit a new version of your assignment. Each homework question will be graded either for
correctness (including clear and precise explanations and justifications of all answers) or fair
effort completeness. On the “graded for correctness” questions, you may only collaborate with
CSE 105 students in your group; if your group has questions about a problem, you may ask in
drop-in help hours or post a private post (visible only to the Instructors) on Piazza. On the
”graded for completeness” questions, you may collaborate with all other CSE 105 students this
quarter, and you may make public posts about these questions on Piazza.

All submitted homework for this class must be typed. You can use a word processing editor if
you like (Microsoft Word, Open Office, Notepad, Vim, Google Docs, etc.) but you might find
it useful to take this opportunity to learn LaTeX. LaTeX is a markup language used widely in
computer science and mathematics. The homework assignments are typed using LaTeX and you
can use the source files as templates for typesetting your solutions. To generate state diagrams of
machines, you can (1) use the LaTex tikzpicture environment (see templates in the class notes),
or (2) use the software tools Flap.js or JFLAP described in the class syllabus (and include a
screenshot in your PDF), or (3) you can carefully and clearly hand-draw the diagram and take a
picture and include it in your PDF. We recommend that you submit early drafts to Gradescope
so that in case of any technical difficulties, at least some of your work is present. You may update
your submission as many times as you’d like up to the deadline.

Integrity reminders

• Problems should be solved together, not divided up between the partners. The homework
is designed to give you practice with the main concepts and techniques of the course, while

Copyright Mia Minnes, 2025, Version March 25, 2025 (33)

getting to know and learn from your classmates.

• On the “graded for correctness” questions, you may only collaborate with CSE 105 students
in your group. You may ask questions about the homework in office hours (of the instructor,
TAs, and/or tutors) and on Piazza (as private notes viewable only to the Instructors). You
cannot use any online resources about the course content other than the class material from
this quarter – this is primarily to ensure that we all use consistent notation and definitions
(aligned with the textbook) and also to protect the learning experience you will have when
the ‘aha’ moments of solving the problem authentically happen.

• Do not share written solutions or partial solutions for homework with other students in
the class who are not in your group. Doing so would dilute their learning experience and
detract from their success in the class.

You will submit this assignment via Gradescope (https://www.gradescope.com) in the assign-
ment called “hw6CSE105W25”.

Assigned questions

1. What’s wrong with these reductions? (if anything) (16 points): Suppose your friends
are practicing coming up with mapping reductions A ≤m B and their witnessing functions
f : Σ∗ → Σ∗. For each of the following attempts, determine if it has error(s) or is correct. Do
so by labelling each attempt with all and only the labels below that apply, and justifying this
labelling.

• Error Type 1: The given function can’t witness the claimed mapping reduction because
there exists an x ∈ A such that f(x) ̸∈ B.

• Error Type 2: The given function can’t witness the claimed mapping reduction because
there exists an x ̸∈ A such that f(x) ∈ B.

• Error Type 3: The given function can’t witness the claimed mapping reduction because the
specified function is not computable.

• Correct: The claimed mapping reduction is true and is witnessed by the given function.

Clearly present your answer by providing a brief (3-4 sentences or so) justification for whether
each of these labels applies to each example.

Copyright Mia Minnes, 2025, Version March 25, 2025 (34)

https://www.gradescope.com

(a) (Graded for completeness) 11 ATM ≤m HALTTM and

f(x) =



⟨ qaccstart , ε⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

and w ∈ L(M)

⟨ q0start qacc

0, 1, → R

⟩ otherwise

(b) (Graded for completeness) ATM ≤m EQTM with

f(x) =


⟨ qaccstart , Mw⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

⟨ qaccstart , qrejstart qacc ⟩ otherwise.

Where for each Turing machine M , we define

Mw = “On input y

1. Simulate M on w.

2. If it accepts, accept.

3. If it rejects, reject.”

(c) (Graded for correctness) 12 HALTTM ≤m EQTM with

f(x) =


⟨ qaccstart , Mw⟩ if x = ⟨M,w⟩ for a Turing machine M and string w

⟨ qaccstart , qrejstart qacc ⟩ otherwise.

Where for each Turing machine M , we define

Mw = “On input y

1. If y is not the empty string, accept.

2. Else, simulate M on w.

3. If it accepts, accept.

4. If it rejects, reject.”
11This means you will get full credit so long as your submission demonstrates honest effort to answer the

question. You will not be penalized for incorrect answers. To demonstrate your honest effort in answering the
question, we expect you to include your attempt to answer *each* part of the question. If you get stuck with
your attempt, you can still demonstrate your effort by explaining where you got stuck and what you did to try
to get unstuck.

12This means your solution will be evaluated not only on the correctness of your answers, but on your ability
to present your ideas clearly and logically. You should explain how you arrived at your conclusions, using
mathematically sound reasoning. Whether you use formal proof techniques or write a more informal argument
for why something is true, your answers should always be well-supported. Your goal should be to convince the
reader that your results and methods are sound.

Copyright Mia Minnes, 2025, Version March 25, 2025 (35)

(d) (Graded for correctness) {ww | w ∈ {0, 1}∗} ≤ Σ∗ and f(x) = 11 for each x ∈ {0, 1}∗.
(e) (Graded for correctness) Σ∗ ≤m {ww | w ∈ {0, 1}∗} and f(x) = 11 for each x ∈ {0, 1}∗.

2. Using mapping reductions (14 points): Consider the following computational problems
we’ve discussed

ATM = {⟨M,w⟩ | M is a Turing machine, w is a string and M accepts w}
HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string and M halts on w}

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}
EQTM = {⟨M1,M2⟩ | M1,M2 are both Turing machines and L(M1) = L(M2)}

and the new computational problem

IncludesEmptyStringTM = {⟨M⟩ | M is a Turing machine and

M accepts the empty string (and maybe other strings too)}

(a) (Graded for correctness) Give an example of a string that is an element of IncludesEmptyStringTM

and a string that is not an element of IncludesEmptyStringTM and briefly justify your
choices.

(b) (Graded for completeness) Prove that IncludesEmptyStringTM is not decidable by showing
that ATM ≤m IncludesEmptyStringTM .

(c) (Graded for correctness) Give a different proof that IncludesEmptyStringTM is not decid-
able by showing that HALTTM ≤m IncludesEmptyStringTM .

(d) (Graded for completeness) Is IncludesEmptyStringTM recognizable? Justify your answer.

3. Using mapping reductions (14 points): Consider the following computational problems
we’ve discussed

ATM = {⟨M,w⟩ | M is a Turing machine, w is a string and M accepts w}
HALTTM = {⟨M,w⟩ | M is a Turing machine, w is a string and M halts on w}

ETM = {⟨M⟩ | M is a Turing machine and L(M) = ∅}
EQTM = {⟨M1,M2⟩ | M1,M2 are both Turing machines and L(M1) = L(M2)}

and the new computational problem

NotIncludesEmptyStringTM = {⟨M⟩ | M is a Turing machine and M does not accept the empty string}

(a) (Graded for correctness) Prove that NotIncludesEmptyStringTM is not the complement of
ETM and is also not the complement of IncludesEmptyStringTM .

(b) (Graded for completeness) Prove that NotIncludesEmptyStringTM is not decidable by
showing that HALTTM ≤m NotIncludesEmptyStringTM .

(c) (Graded for correctness) Give a different proof that NotIncludesEmptyStringTM is not
decidable by showing that ATM ≤m NotIncludesEmptyStringTM .

Copyright Mia Minnes, 2025, Version March 25, 2025 (36)

(d) (Graded for completeness) Is NotIncludesEmptyStringTM recognizable? Justify your an-
swer.

4. Examples of languages (6 points):

For each part of the question, use precise mathematical notation or English to define your
examples and then briefly justify why they work.

For each language L over an alphabet Σ, we have the associated sets of strings (also over Σ)

L∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L}

and
SUBSTRING(L) = {w ∈ Σ∗ | there exist x, y ∈ Σ∗ such that xwy ∈ L}

and
EXTEND(L) = {w ∈ Σ∗ | w = uv for some strings u ∈ L and v ∈ Σ∗}

(a) (Graded for correctness) Two undecidable languages L1 and L2 over the same alphabet
whose union L1 ∪ L2 is co-recognizable, or write NONE if there is no such example (and
explain why).

(b) (Graded for correctness) An unrecognizable language L3 for which EXTEND(L3) is regular
or write NONE if there is no such example (and explain why).

(c) (Graded for completeness) A co-recognizable language L4 that is NP-complete, or write
NONE if there is no such example (and explain why). Recall the definition: A language L
over an alphabet Σ is called co-recognizable if its complement, defined as Σ∗ \ L = {x ∈
Σ∗ | x /∈ L}, is Turing-recognizable.
This part of the question uses definitions from Week 10 of the course.

Copyright Mia Minnes, 2025, Version March 25, 2025 (37)

ProjectCSE105W25: Project Due March 19, 2025 at 8am
The CSE 105 project is designed for you to go deeper and extend your work on assignments and
to see how some of the abstract notions we discuss can be implemented in concrete ways. The
project is an individual assignment and has two tasks:

Task 1: Checking the consistency of two regular properties, and
Task 2: Illustrating a mapping reduction

In each task, you’ll be implementing some of the theoretical concepts we’ve talked about in a
programming language of your choosing, and then presenting your reasoning and demonstrating
your code. Getting practice with this style of presentation is a good thing for you to learn in
general and a rich way for us to assess your skills.

What resources can you use? This project must be completed individually, without any help
from other people, including the course staff (other than logistics support if you get stuck with
screencast). You should be the architect of your approach to the project. You can refer to any
of this quarter’s CSE 105 offering (notes, readings, class videos, homework feedback). Tools for
drawing state diagrams (like Flap.js and JFLAP and the PrairieLearn automata library) can be
used to help draw the diagrams in the project too. However, do not copy / screenshot material
that was not produced by you directly to your project writeup. Instead, you can refer to it in
your own words and include a citation to the resource you referenced.

These resources should be more than enough. If you are struggling to get started and want to
look elsewhere online, you must acknowledge this by listing and citing any resources you consult
(even if you do not explicitly quote them), including any large-language model style resources
(ChatGPT, Bard, Co-Pilot, etc.). Link directly to them and include the name of the author /
video creator, any and all search strings or prompts you used, and the reason you consulted this
reference. Also, a word of caution, make sure you validate and check any code produced by these
aids. Last quarter there were a lot of examples of project submissions that fed the prompt of
the project directly to a LLM code generator and got wrong implementations back.

Submitting the project You will submit a PDF plus a video file (.mp4) for each. All file
submissions will be in Gradescope. Upload the four files themselves. It is your responsibility to
ensure that the files are playable within Gradescope. No Google Drive links, YouTube links, or
.mov files.

Copyright Mia Minnes, 2025, Version March 25, 2025 (38)

Your videos: You may produce screencasts with any software you choose. One option is to
record yourself with Zoom; a tutorial on how to use Zoom to record a screencast (courtesy of
Prof. Joe Politz) is here:

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU.

The video that was produced from that recording session in Zoom is here:

https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl

Please send an email to the instructor (minnes@ucsd.edu) if you have concerns about the video /
screencast components of this project or cannot complete projects in this style for some reason.

Task 1: Checking the consistency of two regular properties When we have a list of
desired properties, it’s helpful to know whether there are any examples that satisfy *all* of them
at once; in other words, whether the properties are consistent with each other. For example, the
properties of a string starting with 0 and a string starting with 1 are not consistent, because
there isn’t any example of a string that simultaneously starts with 0 and with 1. In this part of
the project, you’ll use the decidability of the emptiness problem for DFA to build an algorithm
that checks if two given regular properties are consistent.

Specifically:

1. Write a program in Java, Python, JavaScript, C++ , or another programming language of
your choosing that checks the consistency of two arbitrary regular properties. The function
input must be a pair of strings and part of your work in this program is to design string
representations for any arbitrary DFA since those DFAs will be how you represent the
properties. The function output must be a boolean: true (if the pair of strings represent
consistent regular properties) or false (if the pair of strings do not represent consistent
regular properties).

• You might find it useful to use the algorithm for building a DFA that recognizes
the intersection of the languages of two DFA and the algorithm for testing the
emptiness of the language of a DFA.

• One test case for your program is the following: Consider the DFA M0 and M1

M0 M1

qstartstart

q0

q1

0
0, 1

1

0, 1

rstartstart

r0

r1

0
0, 1

1

0, 1

and let w0 be the string representing M0 and let w1 be the string representing M1.
Then the result of your program on the input w0, w1 should be false because the

Copyright Mia Minnes, 2025, Version March 25, 2025 (39)

https://drive.google.com/open?id=1KROMAQuTCk40zwrEFotlYSJJQdcG_GUU
https://drive.google.com/open?id=1MxJN6CQcXqIbOekDYMxjh7mTt1TyRVMl

properties represented by M0 and M1 are inconsistent.13

• The algorithm you implement needs to work with any pair of strings given as input
(you should first parse each string in the input to see if it is formatted to represent
a DFA). Your explanation of the algorithm should be such that most programmers
can replicate the algorithm correctly. If you would like, you may use aids such as
co-pilot or ChatGPT to help you write this program. However, you should test the
code that is produced and be able to explain what it is doing. Your code needs to be
well-organized and well-documented. As a header in your code file or as an appendix
in your PDF submission, include a comment block describing any resources that were
used to help generate your code, including any and all prompts used in interactions
with LLM coding tools.

2. To demonstrate your program, you will show how it runs (at least) twice: once with
the test input w0, w1 described above, and once with test input x0, x1 that you define to
demonstrate when the program outputs true. Your choice of x0, x1 needs to satisfy the
following conditions:

• x0 and x1 each represent DFA over the same fixed alphabet,

• the DFA represented by x0 and x1 do not recognize the same language,

• the DFA represented by x0 and x1 do not recognize the empty set or the set of all
strings or the set of all strings starting with 0 or the set of all strings starting with 1.

As part of your demonstration, describe your choice of x0 and x1, clearly specifying the
DFAs they represent and the languages recognized by these DFAs. Each demo run of the
program should include:

• Side-by-side view of an English / mathematical formulation of the properties and DFA
corresponding to the demo run, along with their string representation as input strings
to the program.

• Talk-aloud trace of the running of your program on the input pair of strings repre-
senting the two properties for the demo. During the trace, talk about the software
design choices you made (e.g. which data structures are you using, etc.) and how
they impact the program. Also, give credit to any resources you used to make these
design choices or develop the code.

• Recording of actually running your program on the input pair of strings for this demo,
including interpreting the output the program gives and connecting it to whether the
properties represented by the input are consistent or not.

13To see why, notice that L(M0) is the set of strings that start with 0 and L(M1) is the set of strings that start
with 1.

Copyright Mia Minnes, 2025, Version March 25, 2025 (40)

Checklist for submission For this task, you will submit a PDF file plus a 3-5 minute video.

(PDF) Submit a single PDF file that clearly describes the design choices you made, includes all
relevant code, and includes all relevant information (definition, representation, justification)
about the examples used to demonstrate your program and screenshots from running your
program on the examples. The writeup should use precise language and notation for all
terms and clearly communicate the goal and approach of your program.

(PDF) The documentation for your program should include a description of how input strings are
parsed to represent DFA, in general and for the specific examples of w0, w1, x0, x1.

(Video) The video should start with your face and your student ID visible for a few seconds at the
beginning, and introduce yourself audibly while on screen. You don’t have to be on camera
for the rest of the video, though it’s fine if you are. We are looking for a brief confirmation
that it’s you creating the video and doing the work you submitted.

(Video) The video includes the full program demo twice (once with the input w0, w1 and once with
the input x0, x1), and includes the a mathematical and/or English definition of the regular
properties you are using, connected to their representations as strings when input to the
program, and the talk-aloud trace of running the program on these inputs and its output
connecting back to the notion of consistency of regular properties.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Possible extensions: If you’re enjoying working on this and want to go deeper, here are a few
additions you can consider. You will not be graded on any of these, and you should still make
sure your project has the core functionality described above, but these extensions give you an
opportunity to explore further.

• Build a preprocesing step so that the regular properties can be expressed using NFA or
regular expressions (in addition to DFA). You’ll need to think about how to represent NFA
and/or regular expressions as strings, and then how to convert them to DFA.

• Extend your work so that your program can test for consistency of more than two regular
properties.

Copyright Mia Minnes, 2025, Version March 25, 2025 (41)

Task 2: Illustrating a mapping reduction We can use mapping reductions to prove that
interesting computational problems are undecidable, building on the undecidability of other
computational problems. In this part of the project, you’ll choose a specificmapping reduction
from an undecidable language of your choice to

EQTM = {⟨M1,M2⟩ | M1,M2 are Turing machines and L(M1) = L(M2)}

and implement a computable function that witnesses it using a programming language of your
choice (aka a high-level description of a Turing machine that computes it). You will then demon-
strate how your construction works for some test examples.

Specifically:

1. Choose an undecidable language (other than EQTM) that we discussed in class or in the
homework or in review quizzes or in the textbook . Note: if you’d like to consider an
undecidable language we have not discussed instead, please check with Prof. Minnes first.
You must do so no later than the start of Week 10.

2. Write a program in Java, Python, JavaScript, C++ , or another programming language of
your choosing that implements a computable function witnessing this mapping reduction.
The function input must be a string and the function output must be a string. Part
of your work in this program is to design string representations for arbitrary instances of
the model of computation the computational problems being compared in the mapping
reduction.

• You may use our class material for ideas on the algorithm that your program will im-
plement. The algorithm you implement needs to be general enough to decide whether
each input string is in the language or not. Your explanation of the algorithm should
be such that most programmers can replicate the algorithm correctly.

• If you would like, you may use aids such as co-pilot or ChatGPT to help you write
this program. However, you should test the code that is produced and be able to
explain what it is doing. Your code needs to be well-organized and well-documented.
As a header in your code file or as an appendix in your PDF submission, include a
comment block describing any resources that were used to help generate your code,
including any and all prompts used in interactions with LLM coding tools.

3. To demonstrate your program, you will need to run it for an example positive and negative
instance. That is to say, if you are implementing a computable function witnessing X ≤m

EQTM , you will select one string that is in X and one string that is not in X, and you will
demonstrate running your program on each of these strings and explain why the output of
the function is good.

Copyright Mia Minnes, 2025, Version March 25, 2025 (42)

Checklist for submission For this task, you will submit a PDF file plus a 3-5 minute video.

(PDF) Submit a single PDF file that clearly describes the mapping reduction, including defining
the undecidable language you chose and the computable function that you will implement to
witness its mapping reduction to EQTM , and includes all relevant code and documentation
documentation for the program computing the function witnessing this mapping reduction.
In particular, include a description of how input strings are parsed and how output strings
correspond to input strings and a clear specification of your two example strings, explaining
which is is a positive instance (and why) and which is a negative instance (and why not).
The writeup should use precise language and notation for all terms and clearly communicate
the goal and approach of your program.

(Video) The video should start with your face and your student ID visible for a few seconds at the
beginning, and introduce yourself audibly while on screen. You don’t have to be on camera
for the rest of the video, though it’s fine if you are. We are looking for a brief confirmation
that it’s you creating the video and doing the work you submitted.

(Video) The video includes the mapping reduction you will be working with, and the example
strings that you will be using, including explanations of why you chose this reduction and
these strings (and why one of the strings is a positive instance and the other is a negative
instance). The full program demo should be part of the video, with an explanation of the
code and the software design choices you made and any resources you used, and then live
screencasts running your code on each of your example inputs. Explain why the output of
your program is what you would expect, by connecting the output of the program to the
definition of the mapping reduction and your chosen parsing of input strings.

Note: Clarity and brevity are both important aspects of your video. In previous years, we’ve
seen students speed up their videos to get below the 5 minute upper bound. This is ok so long
as it doesn’t compromise clarity. If the graders need to slow your video down to understand it,
it may not earn full credit.

Copyright Mia Minnes, 2025, Version March 25, 2025 (43)

