
regular-languages

Day12

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,Σ,Γ, δ, q0, F ) where Q is the
finite set of states, Σ is the input alphabet, Γ is the stack alphabet,

δ : Q× Σε × Γε → P(Q× Γε)

is the transition function, q0 ∈ Q is the start state, F ⊆ Q is the set of accept states.

For the PDA state diagrams below, Σ = {0, 1}.
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Mathematical description of language State diagram of PDA recognizing language
Γ = {$,#}

q0start q1

q2 q3q4

ε, ε; $

0, ε; #

ε, ε; ε
1,#; ε

1, ε; ε
ε, $; ε

Γ = {☼, 1}

q0start q1

q2 q3 q4

q5 q6

ε, ε;☼

1, ε; 1

ε, ε; ε

ε, ε; ε

0, 1, ; ε

ε,☼; ε

1, ε; ε

0, ε; ε

ε, ε; ε

1, 1; ε

ε,☼; ε

{0i1j0k | i, j, k ≥ 0}

Note: alternate notation is to replace ; with → on arrow labels.
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Corollary: for each language L over Σ, if there is an NFA N with L(N) = L then there is a PDA M with
L(M) = L

Proof idea: Declare stack alphabet to be Γ = Σ and then don’t use stack at all.

Big picture: PDAs are motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

Day14

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet Σ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ∪ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Suppose L1 and L2 are context-free languages over Σ. Goal: L1 ◦ L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,Σ,Γ1, δ1, q1, F1) and M2 = (Q2,Σ,Γ2, δ2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,Σ, R1, S1) and G2 = (V2,Σ, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =
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Summary

Over a fixed alphabet Σ, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet Σ, a language L is context-free

iff it is generated by some CFG
iff it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are nonregular.

Fact: There are countably many regular languages.

Fact: There are countably infinitely many context-free languages.

Consequence: Most languages are not context-free!
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Examples of non-context-free languages

{anbncn | 0 ≤ n, n ∈ Z}
{aibjck | 0 ≤ i ≤ j ≤ k, i ∈ Z, j ∈ Z, k ∈ Z}
{ww | w ∈ {0, 1}∗}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvxyz where (1) for each i ≥ 0, uvixyiz ∈ A, (2) |uv| > 0, (3) |vxy| ≤ p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to
them gives an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

∀x∀y ( (x ∈ Z ∧ y ∈ Z) → xy ∈ Z )
True For each set A, the power set of A is closed under intersection.

∀A1∀A2 ( (A1 ∈ P(A) ∧ A2 ∈ P(A) ∈ Z) → A1 ∩ A2 ∈ P(A) )
The class of regular languages over Σ is closed under complementation.

The class of regular languages over Σ is closed under union.

The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under concatenation.

The class of regular languages over Σ is closed under Kleene star.

The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under concatenation.

The class of context-free languages over Σ is closed under Kleene star.
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Definition and Theorem: For an alphabet Σ, a language L over Σ is called regular exactly when L is
recognized by some DFA, which happens exactly when L is recognized by some NFA, and happens exactly
when L is described by some regular expression

We saw that: The class of regular languages is closed under complementation, union, intersection, set-wise
concatenation, and Kleene star.

Extra practice:

Disprove: There is some alphabet Σ for which there is some language recognized by an NFA but not by
any DFA.

Disprove: There is some alphabet Σ for which there is some finite language not described by any regular
expression over Σ.

Disprove: If a language is recognized by an NFA then the complement of this language is not recognized
by any DFA.

Fix alphabet Σ. Is every language L over Σ regular?

Set Cardinality

{0, 1}

{0, 1}∗

P({0, 1})

The set of all languages over {0, 1}

The set of all regular expressions over {0, 1}

The set of all regular languages over {0, 1}
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Strategy: Find an invariant property that is true of all regular languages. When analyzing a given
language, if the invariant is not true about it, then the language is not regular.

Pumping Lemma (Sipser Theorem 1.70): If A is a regular language, then there is a number p (a pumping
length) where, if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz
such that

• |y| > 0

• for each i ≥ 0, xyiz ∈ A

• |xy| ≤ p.

Proof idea: In DFA, the only memory available is in the states. Automata can only “remember” finitely far
in the past and finitely much information, because they can have only finitely many states. If a computation
path of a DFA visits the same state more than once, the machine can’t tell the difference between the first
time and future times it visits this state. Thus, if a DFA accepts one long string, then it must accept
(infinitely) many similar strings.

Proof illustration
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True or False: A pumping length for A = {0, 1}∗ is p = 5.

True or False: A pumping length for A = {0, 1}∗ is p = 2.

True or False: A pumping length for A = {0, 1}∗ is p = 105.

Restating Pumping Lemma: If L is a regular language, then it has a pumping length.

Contrapositive: If L has no pumping length, then it is nonregular.

The Pumping Lemma cannot be used to prove that a language is regular.

The Pumping Lemma can be used to prove that a language is not regular.

Extra practice: Exercise 1.49 in the book.

Proof strategy: To prove that a language L is not regular,

• Consider an arbitrary positive integer p

• Prove that p is not a pumping length for L

• Conclude that L does not have any pumping length, and therefore it is not regular.

Negation: A positive integer p is not a pumping length of a language L over Σ iff

∃s
(
|s| ≥ p ∧ s ∈ L ∧ ∀x∀y∀z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p ) → ∃i(i ≥ 0 ∧ xyiz /∈ L)

) )
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Proof strategy: To prove that a language L is not regular,

• Consider an arbitrary positive integer p

• Prove that p is not a pumping length for L. A positive integer p is not a pumping length of a
language L over Σ iff

∃s
(
|s| ≥ p ∧ s ∈ L ∧ ∀x∀y∀z

(
(s = xyz ∧ |y| > 0 ∧ |xy| ≤ p ) → ∃i(i ≥ 0 ∧ xyiz /∈ L)

) )
Informally:

• Conclude that L does not have any pumping length, and therefore it is not regular.

Example: Σ = {0, 1}, L = {0n1n | n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =
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Example: Σ = {0, 1}, L = {wwR | w ∈ {0, 1}∗}. Remember that the reverse of a string w is denoted wR

and means to write w in the opposite order, if w = w1 · · ·wn then wR = wn · · ·w1. Note: ε
R = ε.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0j1k | j ≥ k ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =

Example: Σ = {0, 1}, L = {0n1m0n | m,n ≥ 0}.

Fix p an arbitrary positive integer. List strings that are in L and have length greater than or equal to p:

Pick s =

Suppose s = xyz with |xy| ≤ p and |y| > 0.

Then when i = , xyiz =
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Extra practice:

Language s ∈ L s /∈ L Is the language regular or nonregular?

{anbn | 0 ≤ n ≤ 5}

{bnan | n ≥ 2}

{ambn | 0 ≤ m ≤ n}

{ambn | m ≥ n+ 3, n ≥ 0}

{bman | m ≥ 1, n ≥ 3}

{w ∈ {a, b}∗ | w = wR}

{wwR | w ∈ {a, b}∗}
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Regular sets are not the end of the story

• Many nice / simple / important sets are not regular

• Limitation of the finite-state automaton model: Can’t “count”, Can only remember finitely far into
the past, Can’t backtrack, Must make decisions in “real-time”

• We know actual computers are more powerful than this model...

The next model of computation. Idea: allow some memory of unbounded size. How?

• To generalize regular expressions: context-free grammars

• To generalize NFA: Pushdown automata, which is like an NFA with access to a stack: Number
of states is fixed, number of entries in stack is unbounded. At each step (1) Transition to new state
based on current state, letter read, and top letter of stack, then (2) (Possibly) push or pop a letter to
(or from) top of stack. Accept a string iff there is some sequence of states and some sequence of stack
contents which helps the PDA processes the entire input string and ends in an accepting state.

Is there a PDA that recognizes the nonregular language {0n1n | n ≥ 0}?
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q0start q1

q2q3

ε, ε; $

0, ε; 0

1, 0; ε

1, 0; ε
ε, $; ε

The PDA with state diagram above can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and we are at the end of the
input string, accept the input. If the stack becomes empty and there are 1s left to read, or if 1s
are finished while the stack still contains 0s, or if any 0s appear in the string following 1s, reject
the input.

Trace a computation of this PDA on the input string 01.

Extra practice: Trace the computations of this PDA on the input string 011.
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A PDA recognizing the set { } can be informally described as:

Read symbols from the input. As each 0 is read, push it onto the stack. As soon as 1s are seen,
pop a 0 off the stack for each 1 read. If the stack becomes empty and there is exactly one 1 left
to read, read that 1 and accept the input. If the stack becomes empty and there are either zero
or more than one 1s left to read, or if the 1s are finished while the stack still contains 0s, or if
any 0s appear in the input following 1s, reject the input.

Modify the state diagram below to get a PDA that implements this description:

q0start q1

q2q3

ε, ε; $

0, ε; 0

1, 0; ε

1, 0; ε
ε, $; ε
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Review: The language recognized by the NFA over {a, b} with state diagram

q0start

q r s

n d

ε

ε

a

b

b

a, b

a, b

a, b
is:

So far, we know:

• The collection of languages that are each recognizable by a DFA is closed under complementation.

Could we do the same construction with NFA?

• The collection of languages that are each recognizable by a NFA is closed under union.

Could we do the same construction with DFA?
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Happily, though, an analogous claim is true!

Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∪A2.
Theorem 1.25 in Sipser, page 45

Proof idea:

Formal construction:

Example: When A1 = {w | w has an a and ends in b} and A2 = {w | w is of even length}.

(q, n)start

(q, d)

(r, d)

(r, n)

(s, n)

(s, d)

b

a

b

a

a
b

a

b

a
b

a

b
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Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a DFA M1 such that L(M1) = A1

and DFA M2 such that L(M2) = A2, then there is another DFA, let’s call it M , such that L(M) = A1∩A2.
Footnote to Sipser Theorem 1.25, page 46

Proof idea:

Formal construction:

Day8

So far we have that:

• If there is a DFA recognizing a language, there is a DFA recognizing its complement.

• If there are NFA recognizing two languages, there is a NFA recognizing their union.

• If there are DFA recognizing two languages, there is a DFA recognizing their union.

• If there are DFA recognizing two languages, there is a DFA recognizing their intersection.

Our goals for today are (1) prove similar results about other set operations, (2) prove that NFA and DFA
are equally expressive, and therefore (3) define an important class of languages.
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Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ◦ A2.

Proof idea: Allow computation to move betweenN1 andN2 “spontaneously” when reach an accepting state
of N1, guessing that we’ve reached the point where the two parts of the string in the set-wise concatenation
are glued together.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅.
Construct N = (Q,Σ, δ, q0, F ) where

• Q =

• q0 =

• F =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and a ∈ Σε:

δ((q, a)) =


δ1((q, a)) if q ∈ Q1 and q /∈ F1

δ1((q, a)) if q ∈ F1 and a ∈ Σ

δ1((q, a)) ∪ {q2} if q ∈ F1 and a = ε

δ2((q, a)) if q ∈ Q2

Proof of correctness would prove that L(N) = A1 ◦ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string can be written as the
result of concatenating two strings, the first in A1 and the second in A2; then, taking an arbitrary string in
A1 ◦ A2 and proving that it is accepted by N . Details left for extra practice.

Application: A state diagram for a NFA over Σ = {a, b} that recognizes L(a∗b):
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Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A, then there
is another NFA, let’s call it N ′, such that L(N ′) = A∗.

Proof idea: Add a fresh start state, which is an accept state. Add spontaneous moves from each (old)
accept state to the old start state.

Formal construction: Let N = (Q,Σ, δ, q1, F ) and assume q0 /∈ Q. Construct N ′ = (Q′,Σ, δ′, q0, F
′)

where

• Q′ = Q ∪ {q0}

• F ′ = F ∪ {q0}

• δ′ : Q′ × Σε → P(Q′) is defined by, for q ∈ Q′ and a ∈ Σε:

δ′((q, a)) =



δ((q, a)) if q ∈ Q and q /∈ F

δ((q, a)) if q ∈ F and a ∈ Σ

δ((q, a)) ∪ {q1} if q ∈ F and a = ε

{q1} if q = q0 and a = ε

∅ if q = q0 and a ∈ Σ

Proof of correctness would prove that L(N ′) = A∗ by considering an arbitrary string accepted by N ′, tracing
an accepting computation of N ′ on it, and using that trace to prove the string can be written as the result
of concatenating some number of strings, each of which is in A; then, taking an arbitrary string in A∗ and
proving that it is accepted by N ′. Details left for extra practice.

Application: A state diagram for a NFA over Σ = {a, b} that recognizes L((a∗b)∗):
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Suppose A is a language over an alphabet Σ. Claim: if there is a NFA N such that L(N) = A then there
is a DFA M such that L(M) = A.

Proof idea: States in M are “macro-states” – collections of states from N – that represent the set of
possible states a computation of N might be in.

Formal construction: Let N = (Q,Σ, δ, q0, F ). Define

M = ( P(Q),Σ, δ′, q′, {X ⊆ Q | X ∩ F ̸= ∅} )

where q′ = {q ∈ Q | q = q0 or is accessible from q0 by spontaneous moves in N} and

δ′( (X, x) ) = {q ∈ Q | q ∈ δ( (r, x) ) for some r ∈ X or is accessible from such an r by spontaneous moves in N}

Consider the state diagram of an NFA over {a, b}. Use the “macro-state” construction to find an equivalent
DFA.

q0start q1 q2

a, b

a

a, b

b

Consider the state diagram of an NFA over {0, 1}. Use the “macro-state” construction to find an equivalent
DFA.

q0start

q1

q2

ε

ε

0

1

Note: We can often prune the DFAs that result from the “macro-state” constructions to get an equivalent
DFA with fewer states (e.g. only the “macro-states” reachable from the start state).
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The class of regular languages

Fix an alphabet Σ. For each language L over Σ:

There is a DFA over Σ that recognizes L ∃M (M is a DFA and L(M) = A)
if and only if

There is a NFA over Σ that recognizes L ∃N (N is a NFA and L(N) = A)
if and only if

There is a regular expression over Σ that describes L ∃R (R is a regular expression and L(R) = A)

A language is called regular when any (hence all) of the above three conditions are met.

We already proved that DFAs and NFAs are equally expressive. It remains to prove that regular expressions
are too.

Part 1: Suppose A is a language over an alphabet Σ. If there is a regular expression R such that L(R) = A,
then there is a NFA, let’s call it N , such that L(N) = A.

Structural induction: Regular expression is built from basis regular expressions using inductive steps
(union, concatenation, Kleene star symbols). Use constructions to mirror these in NFAs.

Application: A state diagram for a NFA over {a, b} that recognizes L(a∗(ab)∗):

Part 2: Suppose A is a language over an alphabet Σ. If there is a DFA M such that L(M) = A, then there
is a regular expression, let’s call it R, such that L(R) = A.

Proof idea: Trace all possible paths from start state to accept state. Express labels of these paths as
regular expressions, and union them all.

1. Add new start state with ε arrow to old start state.

2. Add new accept state with ε arrow from old accept states. Make old accept states non-accept.

3. Remove one (of the old) states at a time: modify regular expressions on arrows that went through
removed state to restore language recognized by machine.
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Application: Find a regular expression describing the language recognized by the DFA with state diagram

q0start

q1

q2

q3

a

b

a

b

b

a

a, b
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**This definition was in the pre-class reading** A finite automaton (FA) is specified by M = (Q,Σ, δ, q0, F ).
This 5-tuple is called the formal definition of the FA. The FA can also be represented by its state diagram:
with nodes for the state, labelled edges specifying the transition function, and decorations on nodes denoting
the start and accept states.

Finite set of states Q can be labelled by any collection of distinct names. Often we use default
state labels q0, q1, . . .

The alphabet Σ determines the possible inputs to the automaton. Each input to the automaton
is a string over Σ, and the automaton “processes” the input one symbol (or character) at a time.

The transition function δ gives the next state of the automaton based on the current state of
the machine and on the next input symbol.

The start state q0 is an element of Q. Each computation of the machine starts at the start state.

The accept (final) states F form a subset of the states of the automaton, F ⊆ Q. These states
are used to flag if the machine accepts or rejects an input string.

The computation of a machine on an input string is a sequence of states in the machine, starting
with the start state, determined by transitions of the machine as it reads successive input
symbols.

The finite automaton M accepts the given input string exactly when the computation of M
on the input string ends in an accept state. M rejects the given input string exactly when the
computation of M on the input string ends in a nonaccept state, that is, a state that is not in
F .

The language of M , L(M), is defined as the set of all strings that are each accepted by the
machine M . Each string that is rejected by M is not in L(M). The language of M is also called
the language recognized by M .

What is finite about all finite automata? (Select all that apply)

□ The size of the machine (number of states, number of arrows)

□ The length of each computation of the machine

□ The number of strings that are accepted by the machine
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q0start

q1

q2

q3

a

a

b

b
b

a

a, b

The formal definition of this FA is

Classify each string a, aa, ab, ba, bb, ε as accepted by the FA or rejected by the FA.

Why are these the only two options?

The language recognized by this automaton is
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q0start q1 q2
b

a

a

b a, b

The language recognized by this automaton is

q0start

q1 q2

q3

a

b

b

a a, b

a, b

The language recognized by this automaton is
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Day5

Review: Formal definition of DFA: M = (Q,Σ, δ, q0, F )

• Finite set of states Q

• Alphabet Σ

• Transition function δ

• Start state q0

• Accept (final) states F

Quick check: In the state diagram of M , how many outgoing arrows are there from each state?

Note: We’ll see a new kind of finite automaton. It will be helpful to distinguish it from the machines we’ve
been talking about so we’ll use Deterministic Finite Automaton (DFA) to refer to the machines from
Section 1.1.

M = ({q0, q1, q2}, {a, b}, δ, q0, {q0}) where δ is (rows labelled by states and columns labelled by symbols):

δ a b
q0 q1 q1
q1 q2 q2
q2 q0 q0

The state diagram for M is

Give two examples of strings that are accepted by M and two examples of strings that are rejected by M :

A regular expression describing L(M) is

A state diagram for a finite automaton recognizing

{w | w is a string over {a, b} whose length is not a multiple of 3}

Extra example: Let n be an arbitrary positive integer. What is a formal definition for a finite automaton
recognizing

{w | w is a string over {0, 1} whose length is not a multiple of n}?
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Consider the alphabet Σ1 = {0, 1}.

A state diagram for a finite automaton that recognizes {w | w contains at most two 1’s} is

A state diagram for a finite automaton that recognizes {w | w contains more than two 1’s} is

Strategy: Add “labels” for states in the state diagram, e.g. “have not seen any of desired pattern yet” or
“sink state”. Then, we can use the analysis of the roles of the states in the state diagram to work towards
a description of the language recognized by the finite automaton.
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Or: decompose the language to a simpler one that we already know how to recognize with a DFA or NFA.

Textbook Exercise 1.14: Suppose A is a language over an alphabet Σ. If there is a DFA M such that
L(M) = A then there is another DFA, let’s call it M ′, such that L(M ′) = A, the complement of A, defined
as {w ∈ Σ∗ | w /∈ A}.

Proof idea:

A useful bit of terminology: the iterated transition function of a finite automaton M = (Q,Σ, δ, q0, F )
is defined recursively by

δ∗( (q, w) ) =


q if q ∈ Q,w = ε

δ( (q, a) ) if q ∈ Q, w = a ∈ Σ

δ( (δ∗( (q, u) ), a) ) if q ∈ Q, w = ua where u ∈ Σ∗ and a ∈ Σ

Using this terminology, M accepts a string w over Σ if and only if δ∗( (q0, w) ) ∈ F .

Proof:
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Day6

Nondeterministic finite automaton (Sipser Page 53) Given as M = (Q,Σ, δ, q0, F )

Finite set of states Q Can be labelled by any collection of distinct names. Default: q0, q1, . . .
Alphabet Σ Each input to the automaton is a string over Σ.
Arrow labels Σε Σε = Σ ∪ {ε}.

Arrows in the state diagram are labelled either by symbols from Σ or by ε
Transition function δ δ : Q× Σε → P(Q) gives the set of possible next states for a transition

from the current state upon reading a symbol or spontaneously moving.
Start state q0 Element of Q. Each computation of the machine starts at the start state.
Accept (final) states F F ⊆ Q.

M accepts the input string w ∈ Σ∗ if and only if there is a computation of M on w that processes the
whole string and ends in an accept state.

The formal definition of the NFA over {0, 1} given by this state diagram is:

q0start q1

0, 1

1

The language over {0, 1} recognized by this NFA is:

Practice: Change the transition function to get a different NFA which accepts the empty string (and
potentially other strings too).
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The state diagram of an NFA over {a, b} is:

q0start

n d

q r s
ε

ε

a

b

b

a a, b

a, b

a, b

The formal definition of this NFA is:

CC BY-NC-SA 2.0 Version March 25, 2025 (31)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Suppose A1, A2 are languages over an alphabet Σ. Claim: if there is a NFA N1 such that L(N1) = A1 and
NFA N2 such that L(N2) = A2, then there is another NFA, let’s call it N , such that L(N) = A1 ∪ A2.

Proof idea: Use nondeterminism to choose which of N1, N2 to run.

Formal construction: Let N1 = (Q1,Σ, δ1, q1, F1) and N2 = (Q2,Σ, δ2, q2, F2) and assume Q1 ∩ Q2 = ∅
and that q0 /∈ Q1 ∪Q2. Construct N = (Q,Σ, δ, q0, F1 ∪ F2) where

• Q =

• δ : Q× Σε → P(Q) is defined by, for q ∈ Q and x ∈ Σε:

Proof of correctness would prove that L(N) = A1 ∪ A2 by considering an arbitrary string accepted by N ,
tracing an accepting computation of N on it, and using that trace to prove the string is in at least one of
A1, A2; then, taking an arbitrary string in A1 ∪ A2 and proving that it is accepted by N . Details left for
extra practice.
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Day1

The CSE 105 vocabulary and notation build on discrete math and introduction to proofs classes. Some of
the conventions may be a bit different from what you saw before so we’ll draw your attention to them.

For consistency, we will use the notation from this class’ textbook1.

These definitions are on pages 3, 4, 6, 13, 14, 53.

Term Typical symbol Meaning
or Notation

Alphabet Σ, Γ A non-empty finite set
Symbol over Σ σ, b, x An element of the alphabet Σ
String over Σ u, v, w A finite list of symbols from Σ
(The) empty string ε The (only) string of length 0
The set of all strings over Σ Σ∗ The collection of all possible strings formed from

symbols from Σ
(Some) language over Σ L (Some) set of strings over Σ
(The) empty language ∅ The empty set, i.e. the set that has no strings

(and no other elements either)

The power set of a set X P(X) The set of all subsets of X
(The set of) natural numbers N The set of positive integers
(Some) finite set The empty set or a set whose distinct elements

can be counted by a natural number
(Some) infinite set A set that is not finite.

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn

then wR = wn · · ·w1. Note: ε
R = ε

Concatenating strings x and y xy take x = x1 · · · xm, y = y1 · · · yn and form xy =
x1 · · · xmy1 · · · yn

String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x ̸= y

Shortlex order, also known as string
order over alphabet Σ

Order strings over Σ first by length and then ac-
cording to the dictionary order, assuming symbols
in Σ have an ordering

1Page references are to the 3rd edition of Sipser’s Introduction to the Theory of Computation, available through various
sources for approximately $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of the book are
also available for those who can’t access the book to borrow from the course instructor, while supplies last (minnes@ucsd.edu)
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Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

Circle the correct choice:

A string over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

A language over an alphabet Σ is an element of Σ∗ OR a subset of Σ∗.

With Σ1 = {0, 1} and Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and Γ = {0, 1, x, y, z}

True or False: ε ∈ Σ1

True or False: ε is a string over Σ1

True or False: ε is a language over Σ1

True or False: ε is a prefix of some string over Σ1

True or False: There is a string over Σ1 that is a proper prefix of ε

The first five strings over Σ1 in string order, using the ordering 0 < 1:

The first five strings over Σ2 in string order, using the usual alphabetical ordering for single letters:

Day2

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
difficult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?
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**This definition was in the pre-class reading** Definition 1.52: A regular expression over alphabet Σ
is a syntactic expression that can describe a language over Σ. The collection of all regular expressions over
Σ is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a ∈ Σ

ε is a regular expression

∅ is a regular expression

Recursive steps of recursive definition

(R1 ∪R2) is a regular expression when R1, R2 are regular expressions

(R1 ◦R2) is a regular expression when R1, R2 are regular expressions

(R∗
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular
expression. The function that assigns a language to a regular expression over Σ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a ∈ Σ, is {a} and we write L(a) = {a}
The language described by ε is {ε} and we write L(ε) = {ε}
The language described by ∅ is {} and we write L(∅) = ∅.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ∪R2) is the union of the languages described by R1 and R2, and we write

L( (R1 ∪R2) ) = L(R1) ∪ L(R2) = {w | w ∈ L(R1) ∨ w ∈ L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 ◦R2) is the concatenation of the languages described by R1 and R2, and we write

L( (R1 ◦R2) ) = L(R1) ◦ L(R2) = {uv | u ∈ L(R1) ∧ v ∈ L(R2)}

When R1 is a regular expression, the language described by the regular expression (R∗
1) is

the Kleene star of the language described by R1 and we write

L( (R∗
1) ) = ( L(R1) )

∗ = {w1 · · ·wk | k ≥ 0 and each wi ∈ L(R1)}
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For the following examples assume the alphabet is Σ1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression ε is L(ε) = {ε}

The language described by the regular expression ∅ is L(∅) = ∅

The language described by the regular expression 1∗ ◦ 1 is L(1∗ ◦ 1) =

The language described by the regular expression ( (0∪1)◦(0∪1)◦(0∪1) )∗ is L( ( (0∪1)◦(0∪1)◦(0∪1) )∗ ) =

CC BY-NC-SA 2.0 Version March 25, 2025 (36)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Day3

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: ab ∈ L( (a ∪ b)∗ )

True or False: ba ∈ L( a∗b∗ )

True or False: ε ∈ L(a ∪ b ∪ c)

True or False: ε ∈ L( (a ∪ b)∗ )

True or False: ε ∈ L( aa∗ ∪ bb∗ )

Shorthand and conventions (Sipser pages 63-65)

Assuming Σ is the alphabet, we use the following conventions

Σ regular expression describing language consisting of all strings of length 1 over Σ
∗ then ◦ then ∪ precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 ◦R2 (concatenation symbol is implicit)
R+ shorthand for R∗ ◦R
Rk shorthand for R concatenated with itself k times, where k is a (specific) natural number

Caution: many programming languages that support regular expressions build in functionality
that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.
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Practice with the regular expressions over {a, b} below.

For example: Which regular expression(s) below describe a language that includes the string a as an
element?

a∗b∗

a(ba)∗b

a∗ ∪ b∗

(aaa)∗

(ε ∪ a)b

Day28

NP-Complete Problems

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3cnf-formula}

Example string in 3SAT
⟨(x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)⟩

Example string not in 3SAT

⟨(x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x̄ ∨ y ∨ z̄) ∧ (x̄ ∨ ȳ ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄)⟩

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.
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CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k-clique}

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):
3SAT ≤P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x ∨ ȳ ∨ z̄) ∧ (x̄ ∨ y ∨ z) ∧ (x ∨ y ∨ z)
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Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-
tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-
ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between different models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version March 25, 2025 (40)

https://creativecommons.org/licenses/by-nc-sa/2.0/


Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w ∈ {0, 1}∗ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions
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Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable
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Example: What is the language generated by the CFG with rules

S → aSb | bY | Y a

Y → bY | Y a | ε
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Example: Prove that the language T = {⟨M⟩ | M is a Turing machine and L(M) is infinite} is undecid-
able.
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Example: Prove that the class of decidable languages is closed under concatenation.
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