Mapping Reduction

CSE 105 Week 9 Discussion

Deadlines and Logistics

- Test 2 next week (week 10)
- Do review quizzes on <u>PrairieLearn</u>
- HW 6 due Thursday 3/13/25 at 5pm (week 10)
- Project due Wednesday 3/19/25 at 8am (final week) (NO EXTENSION)

Mapping reduction & computable functions

Definition: A is mapping reducible to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A$ if and only if $f(x) \in B$.

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Intuition: $A \leq_m B$ means A is no harder than B, i.e. that the level of difficulty of A is less than or equal the level of difficulty of B. "Can convert questions about membership in A to questions about membership in B"

Computable functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** means there is some Turing machine such that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Warm up: If A is mapping reducible to B then the complement of A is mapping reducible to the complement of B.

Theorems 5.22, 5.28: If A is mapping reducible to B...

- ... and B is decidable, then A is decidable.
- ... and A is undecidable, then B is undecidable.
- ... and B is recognizable, then A is recognizable.
- ... and A is unrecognizable, then B is unrecognizable.

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B. a, m >>

Fix
$$\Sigma = \{0,1\}$$
 throughout this question.

Is each of the stated mapping reductions witnessed by the given function?

$$f(0,1) = \emptyset$$
 $\{0,1\} \leq_m \{00,10\}$ is witnessed by the computable function $f:\Sigma^* o \Sigma^*$ given by

$$f(x) = \begin{cases} 0 & \text{if } \underline{x = y0 \text{ for some } y \in \{0, 1\}} \\ 00 & \text{otherwise} \end{cases}$$

- 1. The mapping reduction relationship is not true.
- 2. The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- 3. This mapping reduction is witnessed by this computable function.

Mapping reduction practice

RQ8.10. Properties of mapping reductions

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f:\Sigma^*\to\Sigma^*$ such that for all $x\in\Sigma^*$, $x\in A$ iff $f(x)\in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Select all and only the true statements below.

- For all languages A and B, if A mapping reduces to B then B mapping reduces to A. \leftarrow
- Every language mapping reduces to its complement.
- Σ^* mapping reduces to every nonempty language over Σ .
- Every decidable language mapping reduces to \emptyset .
- \emptyset mapping reduces to every nonempty language over Σ .
- For all languages A and B and C, if A mapping reduces to B and B mapping reduces to C then A mapping reduces to C.

Proof: \leq_m is transitive

Suppose
$$A \le m B$$
, $B \le m C$.

 $\exists f: x \in A \iff f(x) \in B$.

 $G: x \in B \iff G(x) \in C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m C$.

 $A \le m B$, $A \le m B$, $A \le m B$, $A \le m B$.

 $A \le m B$, $A \le m B$

Simulate Mg on x.

Simulate Mg on y.

output 3.

WTS A \le m C.

Sipser Exercise 5.6

^A5.7 Show that if A is Turing-recognizable and $A \leq_{\mathrm{m}} \overline{A}$, then A is decidable.

Ch. 5 Exercises pg. 239

Halting Problem

M: on input y:

run Mony, if all = all

reg = > bog.

run Mono 2 M/ W/> $HALT_{TM} \leq_m A_{TM}$

 $\langle M', W \rangle$

M; on Y:

ETM W- Pecz ETM Em ATM

Language Emptiness Problem

Prove: $A_{TM} \leq_m E_{TM}$

ZMW> acc >> CM'> nonempty

res/loop => empty

acc) acc y
rej -> reject y

(M >

 $\overline{A_{TM}} \leq_m E_{TM}$

Language Equality Problem

Frove: $HALT_{TM} \leq_m EQ_{TM}$ Z^*

(M, w> hale => LM, M2> equal

CM, W> log> => CM, Mz> unequal

Mi: on input y: (if y #1, rej.

Run Mon W.

if all/re), accept y.

< M, M27

EQIM not rec

EQ-m not co-reco

 $HALT_{TM} \leq_m \overline{EQ_{TM}}$

(M, w) hale >> CM, Mz) unequal

CM, w> log> => LM, , M2> equal

halt => L(Mi) = (2x) {13}

Summary

Computable Problems	Recognizable	Co-recognizable	Decidable
A_{TM}	V	×	×
$\overline{A_{TM}}$	X	V	×
$HALT_{TM}$	V	×	×
$\overline{HALT_{TM}}$	X	V	×
E_{TM}	X	V	×
$\overline{E_{TM}}$	V	×	×
EQ_{TM}	X	×	×
$\overline{EQ_{TM}}$	X	X	X

Equally Expressive Models

- Deterministic Turing Machines
- May-stay Machines (Head can move L, R, Stay)
- Multitape Turing Machines
- Enumerators
- Nondeterministic Turing Machines

Bonus!

Rice's theorem. Let P be any nontrivial property of the language of a Turing machine. Prove that the problem of determining whether a given Turing machine's language has property P is undecidable.

In more formal terms, let P be a language consisting of Turing machine descriptions where P fulfills two conditions. First, P is nontrivial—it contains some, but not all, TM descriptions. Second, P is a property of the TM's language—whenever $L(M_1) = L(M_2)$, we have $\langle M_1 \rangle \in P$ iff $\langle M_2 \rangle \in P$. Here, M_1 and M_2 are any TMs. Prove that P is an undecidable language.

Rice's Theorem

Assume for the sake of contradiction that P is a decidable language satisfying the properties and let R_P be a TM that decides P. We show how to decide A_{TM} using R_P by constructing TM S. First, let T_\emptyset be a TM that always rejects, so $L(T_\emptyset) = \emptyset$. You may assume that $\langle T_\emptyset \rangle \not\in P$ without loss of generality because you could proceed with \overline{P} instead of P if $\langle T_\emptyset \rangle \in P$. Because P is not trivial, there exists a TM T with $\langle T \rangle \in P$. Design S to decide A_{TM} using R_P 's ability to distinguish between T_\emptyset and T.

S = "On input $\langle M, w \rangle$:

- 1. Use M and w to construct the following TM M_w . M_w = "On input x:
 - 1. Simulate M on w. If it halts and rejects, reject. If it accepts, proceed to stage 2.
 - 2. Simulate T on x. If it accepts, accept."
- 2. Use TM R_P to determine whether $\langle M_w \rangle \in P$. If YES, accept. If NO, reject."

TM M_w simulates T if M accepts w. Hence $L(M_w)$ equals L(T) if M accepts w and \emptyset otherwise. Therefore, $\langle M_w \rangle \in P$ iff M accepts w.

if F B decidable

ATM decidable

J F < Mpr EP LM, W> EATM

Sipser Exercise 5.28