Computational Problems, Mapping Reduction

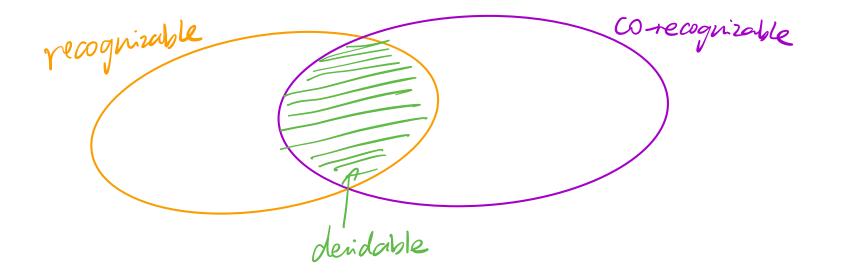
CSE 105 Week 8 Discussion

Deadlines and Logistics

- Do review quizzes on <u>PrairieLearn</u>
- Test 2 attempt 1 in week 10
- HW 6 due 3/13/25 at 5pm, week 10

Vocabulary check

Are all decidable languages recognizable?



Computational Problems

Computational problems

Acceptance problem devidable	
\dots for regular expressions A_{REX} \dots for CFG A_{CFG}	$ \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w \} \\ \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w \} \\ \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates input string } w \} \\ \{ \langle G, w \rangle \mid G \text{ is a context-free grammar that generates input string } w \} \\ \{ \langle B, w \rangle \mid B \text{ is a PDA that accepts input string } w \} $
Language emptiness testing	
$\begin{array}{c} \dots \text{ for NFA} \\ \dots \text{ for regular expressions} \\ \dots \text{ for CFG} \end{array} \qquad \begin{array}{c} E_{NFA} \\ E_{REX} \\ E_{CFG} \end{array}$	$ \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \{ \langle A \rangle \mid A \text{ is a NFA and } L(A) = \emptyset \} \{ \langle R \rangle \mid R \text{ is a regular expression and } L(R) = \emptyset \} \{ \langle G \rangle \mid G \text{ is a context-free grammar and } L(G) = \emptyset \} \{ \langle A \rangle \mid A \text{ is a PDA and } L(A) = \emptyset \} $
Language equality testing	
$\begin{array}{c} \dots \text{ for NFA} \\ \dots \text{ for regular expressions} \\ \dots \text{ for CFG} \end{array} \begin{array}{c} EQ_{NFA} \\ EQ_{REX} \\ EQ_{CFG} \end{array}$	$ \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} $ $ \{ \langle A, B \rangle \mid A \text{ and } B \text{ are NFAs and } L(A) = L(B) \} $ $ \{ \langle R, R' \rangle \mid R \text{ and } R' \text{ are regular expressions and } L(R) = L(R') \} $ $ \{ \langle G, G' \rangle \mid G \text{ and } G' \text{ are CFGs and } L(G) = L(G') \} $ $ \{ \langle A, B \rangle \mid A \text{ and } B \text{ are PDAs and } L(A) = L(B) \} $

Computational problems for Turing machines

for Turing machines A_{TM} $\{\langle M, w \rangle \mid M \text{ is a Turing machine that accepts input string } w \}$ Language emptiness testingfor Turing machines E_{TM} $\{\langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$ Language equality testingfor Turing machines EQ_{TM} $\{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2) \}$

What is A_{TM} ?

- A. A Turing machine whose input is codes of TMs and strings.
- B. A set of pairs of TMs and strings.
- C. A set of strings that encode TMs and strings.
- D. Not well defined.
- E. I don't know.

Halting problem

$$HALT_{TM} = \{(M, w) \mid M \text{ is a Turing machine, } w \text{ is a string, and } M \text{ halts on } w\}$$

$$I \rightarrow R$$

$$I = \{0, 1\}, T = \{0, 1, D\}$$

$$M_{1}:$$

A_{TM} is recognizable but undecidable

A_{TM} is Turing recognizable

- \sim We can define a Turing machine that recognizes A_{TM}
- A_{TM} is **not** Turing decidable
 - Proof by contradiction (diagonalization proof)

Define the TM N = "On input <M,w>:

- 1. Simulate Monw. -> if M Loops on W, N Loops on <M, w>.
- 2. If M accepts, accept. If M rejects, reject."

Which of the following statements is true?
N decides A_{TM}
N always halts
N always halts
N don't know

A_{TM} is recognizable but undecidable

- A_{TM} is Turing recognizable
 - We can define a Turing machine that recognizes A_{TM}
- A_{TM} is **not** Turing decidable
 - Proof by contradiction (diagonalization proof)

Proof: Suppose towards a contradiction that there is a Turing machine that decides A_{TM} . We call this presumed machine M_{ATM} .

Define a **new** Turing machine using the high-level description:

D = "On input $\langle M \rangle$, where M is a Turing machine:

1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$.

2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

What is the result of the computation of D on $\langle D \rangle$?

A_{TM} is recognizable but undecidable decidable.

Aim

O-rel.

ATM not Co-recognizeble

- A_{TM} is recognizable.
- A_{TM} is not decidable.
- $\overline{A_{TM}}$ is not recognizable. <
- $\overline{A_{TM}}$ is not decidable.

Closure claims

Closure and nonclosure

Recall the definitions: A language L over an alphabet Σ is called **recognizable** if there is some Turing machine M such that L = L(M). A language L over an alphabet Σ is called **co-recognizable** if its complement, defined as $\Sigma^* \setminus L = \{x \in \Sigma^* \mid x \notin L\}$, is Turing-recognizable. A language L over an alphabet Σ is called {\bf unrecognizable} if there is no Turing machine that recognizes it.

Select all and only true statements below.

The class of co-recognizable languages is closed under complementation. The class of unrecognizable languages is closed under complementation. \checkmark The class of decidable languages is closed under complementation. The class of recognizable languages is closed under complementation. Select all possible options that apply. ATM ATM not complementation.

Mapping Reduction

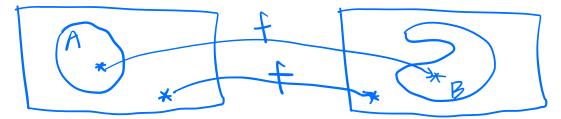
Mapping reduction

DEFINITION 5.20

A is no harder than B

Language A is *mapping reducible* to language B, written $A \leq_{m} B$, if there is a computable function $f: \Sigma^* \longrightarrow \Sigma^*$, where for every w,

 $w \in A \iff f(w) \in B.$



if $X \in A$, then $f(x) \in B$ if $X \notin A$, then $f(x) \notin B$ converts the question about X's membership in A into a question about f(x)'s membership in B. - $f(x) \in B$, then $X \in A$ - $f(x) \notin B$, then $X \notin A$

Computable function

DEFINITION 5.17 A function $f: \Sigma^* \to \Sigma^*$ is a *computable function* if some Turing machine M, on every input w, halts with just f(w) on its tape.

I defined for all XEZ*

(2) there exists an algorithm, take X as imput, output fix) without entering a loop.

$$f(x) = \begin{cases} z & \text{if } x \neq \langle N \rangle \text{ for any avera } N \\ \langle D \rangle & \text{if } x = \langle N \rangle \text{ for some NFA } N \\ \text{and } L(N) = L(D) \text{ where } D \text{ is } D \text{ FA}. \end{cases}$$

M: "On input X: 1. if X F<N> for any NFA N, owoput E. 2. athernite, X =<N>. Me manostate build DFA D S.t. L(N)=L(D). Output <D>.

Mapping reduction

If problem X is no harder than problem Y ...and if Y is **decidable** ...then X must also be **decidable** XEmY

If problem X is no harder than problem Y ...and if X is **undecidable** ...then Y must also be **undecidable**

Mapping reduction practice

Fix $\Sigma = \{0,1\}$ throughout this question.

Is each of the stated mapping reductions witnessed by the given function?

- - $\checkmark \quad \emptyset \leq_m \{0\}$ is witnessed by the function $id: \Sigma^* o \Sigma^*$ given by id(x) = x for all x.
 - **1.** The mapping reduction relationship is true but the given function does not witness this mapping reduction.
 - **2.** This mapping reduction is witnessed by this computable function.
 - **3.** The mapping reduction relationship is not true.

Mapping reduction practice $\{ \langle M, W \rangle \mid M \text{ onepts } W \}$ Prove that $A_{TM} \leq_m EQ_{TM} \longrightarrow \{ \langle M, M_2 \rangle \mid L(M_1) = L(M_2) \}$ exists computable function f(x) s.t. $if \times EA_{TM}$, then $f(x) \in FO_{TM}$ $if \times EA_{TM}$, then $f(x) \notin FO_{TM}$

> (constant & Com) became the condition check is indecidable

Mapping reduction practice X= < M, W) E Arm = M anepts W X=(M~~) & ATM Prove that $A_{\rm TM} \leq_m EQ_{\rm TM}$ =7 M rejects/ boops on W $f(x) = \left\{ egin{array}{c} \langle ext{start} ightarrow egin{array}{c} q_{ ext{acc}} ightarrow egin{array}{c} M_w angle ightarrow$ if $x = \langle M, w \rangle$ for a Turing machine M and string w $\langle \text{start} \rightarrow (q_{\text{acc}}), / \text{start} \rightarrow (q_{\text{rej}})$ Where for each Turing machine M, we define = "On input y" 1. Simulate M on w. M_w if Manapts W, Mu anapts all strings. 2. If it accepts, accept. 3. If it rejects, reject."