# Pumping Lemma and PDA

CSE 105 Week 4 Discussion

#### **Deadlines and Logistics**

- Schedule your tests asap on <u>PrairieTest</u> !
- Do review quizzes on PrairieLearn
- HW3 due Thur 2/6/25 at 5pm (late submission open until 8am next morning)

## Non Regular Languages & Pumping Lemma

#### **Regular Languages Recap**

A language is regular...

- If and only if it is recognized by some DFA macro-states If and only if it is recognized by some NFA structure
- If and only if it is described by some regular expre

The three models are equally expressive, and we have algorithmic ways to translate from one model to another

CINFA

### Regular Languages Recap

We've seen in class that the class of regular languages is closed under

- · Complementation ~ flip accept / non-anept state status in DFA
- Union
- Intersection make 2 DFA compute 'together'' (HWZ Q4.2)
- Set-wise concatenation
- Kleene star

### Non Regular Languages

We've seen in class that there exists non regular languages. How to prove that a language is non regular?

- No DFA / NFA can recognize it, no regular expression can describe it universal statements
- Intead, we can look at an invariant property of all regular languages...

#### An Invariant Property of Regular Languages

- Observation: A DFA can only see so far in the past. How far ?
- Automata can only "remember"...
  - ...finitely far in the past
  - ...finitely much information
- If a computation path visits the same state more than once, the machine can't tell the difference between the first time and future times it visited that state.





#### The Pumping Lemma

THEOREM 1.70

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each  $i \ge 0, xy^i z \in A$ ,
- 2. |y| > 0, and  $\neg y \neq \varepsilon$
- $3. |xy| \leq p.$



#### The Pumping Lemma

#### THEOREM 1.70

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- 2. |y| > 0, and 3.  $|xy| \le p$ . "Yoursary true" 7 no such string! p = 7 > max len = b

What happens when A is a finite language?  $A = \{00, 0|0|, 000|00\}$ 

• / Is A regular? yes (because there's a regex that describes it) • / Does A have a pumping length? If so, what can it be?

#### The Pumping Lemma

#### THEOREM 1.70 ------

**Pumping lemma** If A is a regular language, then there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions:

- **1.** for each  $i \ge 0, xy^i z \in A$ ,
- **2.** |y| > 0, and
- $3. |xy| \le p.$

A positive integer P is the pumping length of a language L if :

 $\forall s \left( (|s| \ge p \land s \in L) \to \exists x \exists y \exists z \left( s = xyz \land |y| > 0 \land |xy| \le p \land \forall i(xy^i z \in L) \right) \right)$ 

#### Key points to note

Statement A : language *L* is regular Statement B : language *L* has a pumping length P

**Pumping lemma states :**  $A \rightarrow B$ , i.e. every regular language has a pumping length

Note that you cannot conclude that  $B \rightarrow A$  ! i.e, just because a language has a pumping length P, it doesn't mean that it is regular !

In other words, pumping lemma cannot be used to prove that a language is regular. What are the necessary and sufficient conditions for a language to be regular ?

PFA/NFA/regular expression

#### How to use pumping lemma?

Recollect that  $A \rightarrow B \equiv \neg B \rightarrow \neg A$  (CSE 20?) !\* What does this tell us ?

"If a language does NOT have a pumping length, then it is definitely not regular"!

\*Contrapositive of an implication is equivalent to the implication itself

### Strategy for proving non-regularity

To prove that a language L is not regular:

- 1. Consider arbitrary positive integer p
- 2. Prove that p isn't a pumping length for L (adhering to all conditions)
- 3. Conclude that L does not have any pumping length and is therefore not regular.

# Strategy cont. A positive integer P(is) the pumping length of a language L if : $\forall s ((|s| \ge p \land s \in L) \rightarrow \exists x \exists y \exists z (s = xyz \land |y| > 0 \land |xy| \le p \land \forall i(xy^i z \in L)))$ The negation, "A positive integer P is NOT the pumping length of a language L if : " $\exists s (|s| \ge p \land s \in L \land \forall x \forall y \forall z ((s = xyz \land |y| > 0 \land |xy| \le p) \rightarrow \exists i(xy^i z \notin L)))$

#### Strategy cont.

A positive integer P is the pumping length of a language L if :

$$\neg \forall s \left( (|s| \ge p \land s \in L) \to \exists x \exists y \exists z \left( s = xyz \land |y| > 0 \land |xy| \le p \land \forall i (xy^i z \in L) \right) \right)$$

The negation, " A positive integer P is NOT the pumping length of a language L if : "

$$\overrightarrow{\exists} s \left( |s| \ge p \land s \in L \land \forall x \forall y \forall z \left( (s = xyz \land |y| > 0 \land |xy| \le p) \to \exists i (xy^i z \notin L) \right) \right)$$

Although negating the 1<sup>st</sup> implication to get the 2<sup>nd</sup> is not part of CSE 105, I urge you to practice the negation ! Understanding first order predicate logic is a very useful skill to have !  $\exists s (|s| \ge p \land s \in L \land \forall x \forall y \forall z ((s = xyz \land |y| > 0 \land |xy| \le p) \rightarrow \exists i(xy^i z \notin L)))$ For some P,  $\leftarrow$  W.t.s. P is not a pumping length of L

There is some "long" string *s* in the language *L* such that

For all "valid" splits of *s* into *x*, *y*, *z* 

Repeating *y i* times, for some integer value *i* throws the resulting string out of the language.

#### $\exists s (|s| \ge p \land s \in L \land \forall x \forall y \forall z ((s = xyz \land |y| > 0 \land |xy| \le p) \to \exists i(xy^i z \notin L)))$

For some P.



-Set P to be an arbitrary positive integer

There is some "long" string s in the language L such that

**Choose s creatively** (critical step) such that  $|s| \ge P \land s \in L$ 

```
For all "valid" splits of s into x, y, z
```

-Define x, y, z according to conditions lyl>0 ∧ lxyl≤P Consider o

Repeating y i times, for some integer value i throws the resulting string out of the language.

-Choose i)such that xy<sup>i</sup>z is ejected from L

Prove that  $L = \{a^m b^n \mid 0 \le m \le n\}$  is non-regular Densider arbitrang postive integer P W.t.s. P is not a pumping length for L 15 7PV aa.-abb...b 2 pick S=abb SELV (3) consider any S=XYZ where |Y|>0,  $|XY| \leq P$ i.e.  $X=a^m$ ,  $Y=a^n(n>0)$ ,  $Z=a^{P-m-n}b^P$ N>0 => p+n>p



# Push-Down Automata

#### Push-Down Automata

• NFA + Stack for (more) powerful computations



#### Witnessing acceptance

- 1. You read the entire input string
- 2. At least one of computation on the string ends in an accepting state
- 3. The stack is empty

The stack contents do not directly determine the acceptance of the input string ! Edge label notation (when a, b, c are characters)

•Label a , b ; c or a ,  $b \rightarrow c$  means

•Read an a from the input

•Pop **b** from the stack

•Push c to the stack

-Label a , b ; c or a , b  $\rightarrow$  c means

- •Read an a from the input
- •Pop **b** from the stack
- •Push c to the stack

What edge label would indicate "Read a 0, don't pop anything from stack, don't push anything to the stack"? A. 0,  $\varepsilon \rightarrow \varepsilon$ B.  $\varepsilon$ ,  $0 \rightarrow \varepsilon$ C.  $\varepsilon$ ,  $\varepsilon \rightarrow 0$ D.  $\varepsilon \rightarrow \varepsilon$ , 0E. I don't know.

#### Review the formal definition of a PDA



#### Review quiz

Consider the Pushdown Automaton (PDA) with input alphabet  $\Sigma = \{0,1\}$ , stack alphabet  $\Gamma = \{0,\$\}$  and state diagram:



Select all and only the strings below that are accepted by this PDA.

111
00
011

01

