
Pumping Lemma and PDA

CSE 105 Week 4 Discussion

 



Deadlines and Logistics

● Schedule your tests asap on PrairieTest !
● Do review quizzes on PrairieLearn
● HW3 due Thur 2/6/25 at 5pm (late submission open until 8am next morning)

http://prairietest.com
http://us.prairielearn.com/


Non Regular Languages & Pumping Lemma



Regular Languages Recap

A language is regular…

● If and only if it is recognized by some DFA
● If and only if it is recognized by some NFA
● If and only if it is described by some regular expression

The three models are equally expressive, and we have algorithmic ways to 
translate from one model to another



Regular Languages Recap

We’ve seen in class that the class of regular languages is closed under 

● Complementation
● Union 
● Intersection 
● Set-wise concatenation 
● Kleene star



Non Regular Languages

We’ve seen in class that there exists non regular languages. How to prove that a 
language is non regular?

● No DFA / NFA can recognize it, no regular expression can describe it – 
universal statements

● Intead, we can look at an invariant property of all regular languages…



An Invariant Property of Regular Languages

● Observation: A DFA can only see so far in the past. How far ? 
● Automata can only "remember"…

○ …finitely far in the past
○ …finitely much information

● If a computation path visits the same state more than once, the machine can't 
tell the difference between the first time and future times it visited that state.

Sipser Figure 1.72



The Pumping Lemma

Sipser Theorem 1.70, FIgure 1.72



The Pumping Lemma

What happens when A is a finite language?

● Is A regular?
● Does A have a pumping length? If so, what can it be?



The Pumping Lemma

A positive integer P is the pumping length of a language L if : 



Key points to note

Statement A : language L is regular
Statement B : language L has a pumping length P

Pumping lemma states : A→B, i.e. every regular language has a pumping length

Note that you cannot conclude that B→A ! i.e, just because a language has a 
pumping length P, it doesn't mean that it is regular !

In other words, pumping lemma cannot be used to prove that a language is regular.
What are the necessary and sufficient conditions for a language to be regular ?



How to use pumping lemma ?

Recollect that A→B ≡ ¬B→¬A (CSE 20?) !* 
What does this tell us ?

“If a language does NOT have a pumping length, then it is definitely not regular” !

*Contrapositive of an implication is equivalent to the implication itself



Strategy for proving non-regularity

To prove that a language L is not regular:

1. Consider arbitrary positive integer p
2. Prove that p isn't a pumping length for L (adhering to all conditions)
3. Conclude that L does not have any pumping length and is therefore not 

regular.



Strategy cont.

A positive integer P is the pumping length of a language L if : 

The negation, “ A positive integer P is NOT the pumping length of a language L if : ” 



Strategy cont.

A positive integer P is the pumping length of a language L if : 

The negation, “ A positive integer P is NOT the pumping length of a language L if : ” 

Although negating the 1st implication to get the 2nd is not part 
of CSE 105, I urge you to practice the negation ! 
Understanding first order predicate logic is a very useful skill 
to have !



For some P, 

There is some “long” string s in the language L such that

For all “valid” splits of s into x, y, z 

Repeating y i times, for some integer value i throws the resulting string out of the 
language.



For some P, 

-Set P to be an arbitrary positive integer

There is some “long” string s in the language L such that

-Choose s creatively (critical step) such that |s|≥P ∧ s∈L

For all “valid” splits of s into x, y, z 

-Define x, y, z according to conditions |y|>0 ∧ |xy|≤P

Repeating y i times, for some integer value i throws the resulting string out of the 
language.

-Choose i such that xyiz is ejected from L



Prove that L = {ambn | 0≤m≤n} is non-regular



Week 4 notes page 7



Push-Down Automata



Push-Down Automata

● NFA + Stack for (more) powerful computations



Witnessing acceptance

1. You read the entire input string
2. At least one of computation on the string ends in an accepting state
3. The stack is empty

The stack contents do not 
directly determine the 
acceptance of the input 
string !



Edge label notation (when a, b, c are characters)

•Label a , b ; c or a , b ⟶ c means
•Read an a from the input
•Pop b from the stack
•Push c to the stack



•Label a , b ; c or a , b ⟶ c 
means

•Read an a from the input
•Pop b from the stack
•Push c to the stack



Review the formal definition of a PDA

Sipser Definition 2.13



Review quiz


