
DFAs, NFAs and Regular
Expressions

CSE 105 Week 3 Discussion

Deadlines and Logistics

● Review your HW 1 grade
● Schedule your tests asap on PrairieTest !
● HW 2 due next week on 30th (Thursday) at 5 PM

http://prairietest.com

Current progress - Answer Y/N

1. Given a DFA and a string, I can tell if the string is accepted or not
2. Given a DFA, I can identify the language that is recognized by it
3. Given a regular expression or a Language, I can define and draw a DFA

and,

4. Given an NFA and a string, I can tell if the string is accepted or not
5. Given an NFA, I can identify the language that is recognized by it
6. Given a regular expression or a Language, I can define and draw an NFA

Today's Topics

1. Recap of ε-transitions in an NFA
2. Closure over U, ∩,∁,* and ○ operations in NFAs, DFAs
3. Equivalence of DFAs, NFAs
4. Tying it all together : DFAs, NFAs and regular expressions : Regular languages

(if time permits)

ε-transitions

ε-transitions

1. What state(s) do you reach when you read:
a. 10
b. 1
c. 0
d. ε

ε-transitions

1. What state(s) do you reach when you read:
a. 10 : Q6
b. 1 : Q4, Q5
c. 0 : Q6
d. ε: Q0, Q1, Q2, Q3, Q4, Q6

Modify this NFA to…

1. Have exactly one accept state
a. With and without changing Q (the set of states)

 in the 5-tuple definition

2. Have 5 accept states, q3∉F, q4∉F

Note - The modified NFA has to recognize the same language !

Modify this NFA to…

1. Have exactly one accept state
a. With and without changing Q (the set of states)

 in the 5-tuple definition

2. Have 5 accept states, q3∉F, q4∉F

DFAs and NFAs closure over U, * and ○

Closure - What we learnt last week

Languages accepted by DFAs are closed under complementation

Strategy :

Closure - What we learnt last week

Languages accepted by DFAs are closed under complementation

Strategy : Flip the accept states and non-accept states

Closure - What we learnt last week

Languages accepted by NFAs are closed under union

Strategy:

Closure - What we learnt

Languages accepted by NFAs are closed under union

Strategy:

Closure

1. Languages accepted by DFAs are closed under union
2. Languages accepted by DFAs are closed under intersection

Strategy:

Closure

1. Languages accepted by DFAs are closed under union
2. Languages accepted by DFAs are closed under intersection

Strategy: Parallel Computation

A2A1

Motivating example : Σ = {0,1}

L(A1) : Set of all strings over Σ containing even number of 0’s

L(A2): Set of all strings containing non negative integer repeats of 10

A1 and A2 are DFAs

Create a DFA A such that :

1. L(A) = L(A1) U L(A2)
2. L(A) = L(A1) ∩ L(A2)

Let us develop some informal intuition !

L(A1) : Set of all strings over Σ containing even number of 0’s

L(A2): Set of all strings containing non negative integer repeats of 10

A1 (L) and A2 (R)

G - (G)ood to go !
O - I read a (O)ne from G !
T - (T)rapped - no returns !

A1 (L) and A2 (R)

G - (G)ood to go !
O - I read a (O)ne from G !
T - (T)rapped - no returns !

You don’t have to actually label your states like
this, but it is good to have an idea what each state
indicates, especially when you are drawing out
smaller state diagrams like these !

1: Identify states (Q)

1: Identify states (Q)

Think and answer :

● What does G_e represent ?
● What about T_o ?
● What strings will end at state G_o ?
● What strings will end at state O_o ?
● What about O_e ?

2: Identify q0

A1

A2

2: Identify q0

3: Identify δ

A1

A2

3: Identify δ

A1

A2

3: Identify δ

A1

A2

3: Identify δ

A1

A2

3: Identify δ

A1

A2

4: Identify F : A1UA2

4: Identify F : A1UA2

4: Identify F : A1∩A2

4: Identify F : A1∩A2

Reading strings over this automaton

Think and answer :

● What strings will end at state
G_e

● What strings will end at state
T_o ?

● What strings will end at state
G_o?

● What strings will end at state
O_o?

● What strings will end at state
O_e ?

Reading strings over this automaton : Trace and verify !

Non exhaustive examples:

● 10101010, 1010, ε
● 000, 0, 010011
● 10, 101010
● 101, 1010101
● 1, 10101

Set operations over L(NFAs)

Languages accepted by NFAs are closed under concatenation

Strategy :

Set operations over L(NFAs)

Languages accepted by NFAs are closed under concatenation

Strategy :

Practice: write out
the formal definition!

Set operations over L(NFAs)

Languages accepted by NFAs are closed under Kleene *

Strategy :

Set operations over L(NFAs)

Languages accepted by NFAs are closed under Kleene *

Strategy :

Practice: write out
the formal definition!

DFAs, NFAs and Regular Expressions are equally
expressive

DFA

NFA
RegEx

Let us start with DFA and NFA equivalence

Alice : “To find an NFA which is equivalent to a given DFA is easy ! All DFAs are
NFAs by default”

True or False ?

DFA
NFA

Let us start with DFA and NFA equivalence

Alice : “To find an NFA which is equivalent to a given DFA is easy ! All DFAs are
NFAs by default”

False ! Remember that the 5-tuple formal definition for DFAs and NFAs is slightly
different. Recall what changes need to be made to quickly “convert” a DFA to an
equivalent NFA

Let us start with DFA and NFA equivalence

Bob : “To find a DFA which is equivalent to a NFA is slightly harder. I should have
paid attention during lecture today and I possibly need to revise the material from
Sipser pg 54-58”

True or False ?

Let us start with DFA and NFA equivalence

General Idea - Create “Macro States” for the DFA that keeps track of combinations
of states of a given NFA

Sipser pg 57

Sipser pg 57

NFA N

NFA N

DFA D recognizing L(N)

Now, NFA and RegEx equivalence

RegEx
NFA

Regex to NFA

Recall :

Regex to NFA

Recall :

Practice : (aUb)*aba

Example 1.58 Sipser, pg 69

Practice : (aUb)*aba

Example 1.58 Sipser, pg 69

NFA/DFA to Regex

1. Add one extra start and end state respectively, and make requisite
connections

2. Prune away states one by one making sure to re-make edge connections such
that the state diagram is equivalent to itself prior to pruning. Remade edges
can be labelled with regular expressions.

3. Rinse and repeat till you have a single edge between the added start and end
state.

Examples of removing states (q1)

Examples of removing states (q1)

