Regular Expressions

CSE 105 Week 1 Discussion

Deadlines and Logistics

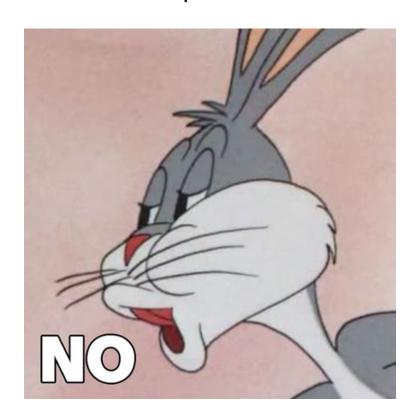
- Make sure you have access to the <u>class website</u>, canvas, piazza and gradescope
- Make sure you can see all our OH in the <u>class calendar</u>
- Make sure you have access to <u>PrairieLearn</u> and <u>PrairieTest</u>.
- Read the grading scheme on the class website!
- Schedule your tests asap on <u>PrairieTest</u>!
- HW1 due next week on 16th (Thursday) at 5 PM

What can you expect from the discussion section

- Recap of key concepts from lectures
- Lots of informal interaction
- Practice problems from notes, review quizzes, Sipser and HW
- Ask us any questions and get your doubts answered!

PS - All screenshots taken either from Sipser or class notes unless specified otherwise

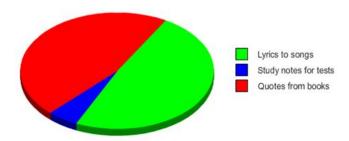
Are the discussion sections podcasted/online/recorded?



General Information

Do not memorize anything for the sake of completion of HWs, exams etc without first understanding underlying concepts!

What I can memorize



Motivation

- 1. What are the capabilities and limitations of computers?
- 2. Can we answer how "difficult" (or if even possible) a certain computation task is?
- 3. Can we mathematically model computational problems?

Important notation

Alphabet A non-empty finite set, usually denoted as Σ

Symbol An element of the alphabet

String over \Sigma A finite list of symbols from Σ

Language over ∑ A set of strings over ∑

 Σ^* Set of all possible strings formed from symbols in Σ

Is this statement correct?

Given Language $L = \{w|w \text{ is a string over } \{0\} \text{ such that } |w| = 1\}$, then L = 0.

Review Quiz Question

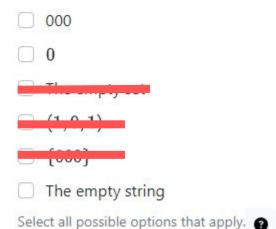
Consider the language $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}$. Which of the following are elements of this language? (Select all and only that apply)

- 000
- 0
- The empty set
- (1,0,1)
- **(000)**
- The empty string

Select all possible options that apply.

Review Quiz Question

Consider the language $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}$. Which of the following are elements of this language? (Select all and only that apply)



Can eliminate all non string options! (since only strings can be elements of a language

What option(s) can you eliminate right away by virtue of the definition of strings and languages?

Regular Expressions

Remember that at the end of the day, Languages are sets. How can we define a set?

- 1. List out all the elements
- 2. Use set builder notation and describe membership condition

Or

3. Use recursive definitions (Regular Expressions!)

The language described by a regular expression R is L(R)

Recap

Let A and B be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Pop quiz : If $\Sigma = \{0,1\}$ and language A = $\{0, 01, 1\}$ and B = $\{\epsilon, 1\}$ What is

- A U B
- A > B
- B*
- Is $(A^*)^* = A^*$?

Recap

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

Pop quiz : If $\Sigma = \{0,1\}$ and language A = $\{0,01,1\}$ and B = $\{\epsilon,1\}$ What is

- A U B : {ε, 0, 1, 01}
- AoB: {0, 01, 1, 011, 11}
- B*: {ε, 1, 11, 111} or {1_k| k is a non negative integer}
- Is $(A^*)^* = A^*$?: Yes! Both expressions produce the set of all strings that can be formed by concatenating strings in A with one another as many times as we want

R is a regular expression over the alphabet Σ

- 1. R = a, where $a \in \Sigma$
- 2. $R = \varepsilon$
- 3. $R = \emptyset$
- 4. $R = (R_1 \cup R_2)$, where R_1, R_2 are themselves regular expressions
- 5. $R = (R_1 \circ R_2)$, where R_1, R_2 are themselves regular expressions
- 6. (R_1^*) , where R_1 is a regular expression.

Context is super important!

For the following examples assume the alphabet is $\Sigma_1 = \{0, 1\}$:

The language described by the regular expression 0 is $L(0) = \{0\}$

The language described by the regular expression 1 is $L(1) = \{1\}$

The language described by the regular expression ε is $L(\varepsilon) = \{\varepsilon\}$

The language described by the regular expression \emptyset is $L(\emptyset) = \emptyset$

The language described by the regular expression $(\Sigma_1\Sigma_1\Sigma_1)^*$ is $L((\Sigma_1\Sigma_1\Sigma_1)^*) =$

Do both the Σ_1 refer to the same thing?

Context is super important!

Refers to the alphabet set Σ_1 containing symbols 1 and 0!

For the following examples assume the alphabet is $\Sigma_1 = \{0, 1\}$:

The language described by the regular expression 0 is $L(0) = \{0\}$

The language described by the regular expression 1 is $L(1) = \{1\}$

The language described by the regular expression ε is $L(\varepsilon) = \{\varepsilon\}$

The language described by the regular expression \emptyset is $L(\emptyset) = \emptyset$

The language described by the regular expression $(\Sigma_1\Sigma_1\Sigma_1)^*$ is $L((\Sigma_1\Sigma_1\Sigma_1)^*) =$

Do both the Σ_1 refer to the same thing ? : NO !

Refers to one occurrence of any symbol (0 or 1 in this case) from Σ_1 .

Other conventions

Assuming Σ is the alphabet, we use the following conventions

 Σ regular expression describing language consisting of all strings of length 1 over Σ

* then ∘ then ∪ precedence order, unless parentheses are used to change it

 R_1R_2 shorthand for $R_1 \circ R_2$ (concatenation symbol is implicit)

 R^+ shorthand for $R^* \circ R$

 R^k shorthand for R concatenated with itself k times, where k is a (specific) natural number

Remember

A regular expression should describe a SET of strings over an alphabet since it is descriptive of a Language, which is a SET of strings over an alphabet.

All "operations" and "conventions" you see in a regular expression boil down to some fundamental operation(s) on set(s).

What operations and what sets?

Remember

A regular expression should describe a SET of strings over an alphabet since it is descriptive of a Language, which is a SET of strings over an alphabet.

All "operations" and "conventions" you see in a regular expression boil down to some fundamental operation(s) on set(s).

What operations and what sets?

U, * and o

As a basis step:

- Element ∈ alphabet or
- 3
- Ø

Inductively:

On any regular expression(s)

When you see... The language described by the regular expression $1^* \circ 1$ is $L(1^* \circ 1) =$

You need to think: sets and operations!

Solve:

When you see... The language described by the regular expression $1^* \circ 1$ is $L(1^* \circ 1) =$

You need to think: sets and operations!

```
Solve: L(1^* \circ 1)
= L(1^*) \circ L(1)
= L(1)^* \circ L(1)
= \{1\}^* \circ \{1\}
= \{1^k \mid k > = 0\} \circ \{1\}
= \{1^k \mid k > = 0\} (sufficient to leave it at this step)
= \{1^k \mid k > = 1\}
```

From Regex to Language

The language over $\Sigma_1=\{0,1\}$ described by the regular expression Σ_1^*1 is $L(\Sigma_1^*1)=$ BLANK

Describe this set in (a) Simple english and (b) Set builder notation

- (a) Set of all strings over Σ_1 ending in a 1
- (b) $\{x1 \mid x \in \sum_{1}^{*}\}$

Describe the language generated by these Regex (over $\Sigma = \{0,1\}$): Basics

- 1. (OU1)
- 2. (0U1)*
- 3. Σ*
- 4. (0)U(1)
- 5. (01) U (1)
- 6. (01)* U (1)
- 7. (O1 U 1)*

Describe the language generated by these Regex(over $\Sigma = \{0,1\}$): Basics

- 1. (OU1): {O,1}
- 2. $(0U1)^* : \{x \mid x \in \Sigma^*\}$
- 3. Σ^* : Set of all strings that can be created from elements in Σ (Notice similarity to (2)
- 4. (0)U(1): {0, 1}
- 5. (01) U (1): {01, 1}
- 6. (01)* U (1) : { $(01)^k$ | k>=0} U {1}
- 7. $(01 \cup 1)^* : \{x \mid x \in \{01,1\}^*\}$

Describe the language generated by these Regex(over $\Sigma = \{0,1\}$): Level up

- 1. (01)(01)*(01)
- $2. (01)^+(01)$
- 3. 1 U 11 U 111 U 1111 U 11111*
- 4. $\epsilon^* \sum \sum \epsilon^*$
- 5. $(\epsilon \cup \Sigma)(\epsilon \cup \Sigma)(\epsilon \cup \Sigma)$
- 6. $\Sigma^*1\Sigma^*0\Sigma^* \cup \Sigma^*0\Sigma^*1\Sigma^*$
- 7. $(1\Sigma^*1) \cup (0\Sigma^*0) \cup (\epsilon) \cup (1) \cup (0)$

Describe the language generated by these Regex(over $\Sigma = \{0,1\}$): Level up

- 1. (01)(01)*(01): Set of strings containing repeating units of (01) with at least 2 repeats
- 2. $(01)^+(01)$: Set of strings containing repeating units of (01) with at least 2 repeats
- 3. 1 U 11 U 111 U 1111 U 11111*: Same language as 11* or 1*
- 4. $\varepsilon^*\Sigma\Sigma\Sigma\varepsilon^*$: All strings of length 3
- 5. $(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)(\varepsilon \cup \Sigma)$: All strings of length at most 3
- 6. $\Sigma^{*1}\Sigma^{*0}\Sigma^{*}$ U $\Sigma^{*0}\Sigma^{*1}\Sigma^{*}$: All strings containing at least one 1 and one 0
- 7. $(1\Sigma^*1)$ U $(0\Sigma^*0)$ U (ϵ) U (1) U (0) : All strings starting and ending with the same symbol

Questions?

Good luck for HW 1!