
Practical Applications of Theory of Computation

Compiled by Vicente Montoya and Jefferson Chien for CSE 105 Spring 2020

In this class we have explored some of the many computational models that

exist and classified them in terms of their computational complexity, from deterministic

and nondeterministic finite automata, the most simple models of computation, to the

most powerful model, the Turing Machine. While they are very helpful in explaining the

fundamental capabilities and limitations of computers, it seems easy to overlook the

importance and uses of these computational models in practical applications and

modern technologies. These are some of the many applications of Computational

Theory:

Search Patterns

In practice, regular expressions are strings that allow you to describe search patterns

that help match, locate, and manage text in general. They are used in many

programming languages, such as Perl, Awk, Python and Java, as well as many text

editors such as vi and emacs. They are also the basis of the (really useful) Unix

command line utility program Globally Search a Regular Expression and Print, otherwise

known as grep.

The practical regular expressions are often called regex. Regex was developed under

the influence of theoretical regular expressions. However some practical regular

expressions later introduced more complex syntax rules, and thus have different

expressive capabilities from the theoretical ones. Many regex in use now can express a

larger family of languages than the regular language. For example, Perl regex can

express the languages L1 = {anban | n≥0 }, as well as L2 = {ww | w ∈ {a, b}* }. However,

Perl regex cannot express the language L3 = {anbn | n ≥ 0}, all of which we know to be

context-free languages.

Read more about the origin of Regex and small introduction to its syntax in this online

tutorial Get Started with Regex: Regular Expressions Make Easy

Read more about the formal classification of Regex: A Formal Study of Practical

Regular Expressions (fun fact: Prof. Minnes took a class from one of the authors of this

paper in college.)

Artificial and Life Simulation

One of the main goals of the field of artificial life is to determine how complex systems,

such as life forms can emerge in an entropic universe. Researchers in this field use

mathematical models in order to try to simulate biological and chemical systems to

achieve this goal.

One of the most commonly used models is cellular automata, a mathematical model

proven to be Turing complete, meaning it is computationally universal, or capable of

simulating a Turing machine. The popular Conway's Game of Life, is a two-dimensional

cellular automaton, and it is known to be related to an undecidable problem. (In the

news: John Conway recently passed away from complications from COVID-19.)

This blog post has more about Cellular Automata.

Compilers

Lexical analysis is the first phase of a compiler. It consists of taking the source code in

the form of sentences and breaking them down into individual characters and then

https://www.whoishostingthis.com/resources/regex/
https://www.worldscientific.com/doi/abs/10.1142/S012905410300214X
https://www.worldscientific.com/doi/abs/10.1142/S012905410300214X
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://www.princeton.edu/news/2020/04/14/mathematician-john-horton-conway-magical-genius-known-inventing-game-life-dies-age
https://towardsdatascience.com/algorithmic-beauty-an-introduction-to-cellular-automata-f53179b3cf8f

assembling them into a series of tokens. The set of possible character sequences of a

token, is called the lexical syntax and it is usually a regular language.

Context-free grammars (CFGs) also constitute an essential role in compilers. They are

mainly used in the Parsing phase of the compiling process. The goal of this phase is to

take the tokens generated by the lexer, and analyze whether there exists certain patterns

between them, to then associate those patterns with expressions like calling functions,

recalling variables, etc. One of the most commonly used methods is top-down parsing

that tries to find leftmost derivations of the stream of tokens by searching for parse

trees using a top-down expansion of the given formal grammar rules.

Read this blog post for more about how compiler works: Understanding Compilers —

For Humans (Version 2)

Linguistics and Natural Language Processing

Natural Language Processing is a subfield of linguistics and computer science that

studies, among other things, how to program computers to process and analyze natural

language data.

The main techniques of how human language is analyzed by computers, which include

the process of parsing, are rooted in Context-Free-Grammars (CFGs), an abstract,

mathematical theory of language developed by Noam Chomsky. He also proposed a

general hierarchy to describe the classes of formal language, which is the basis of the

modern classification of formal language.

Some of the applications of Natural Language Processing include: machine translation,

speech recognition and spell checking.

In the case of speech recognition, there are models that use a finite-state transducer, a

finite state machine that has memory tapes like a Turing Machine. (Our CSE 105

https://towardsdatascience.com/understanding-compilers-for-humans-version-2-157f0edb02dd
https://towardsdatascience.com/understanding-compilers-for-humans-version-2-157f0edb02dd
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Natural_language

textbook introduces finite-state transducers in the exercises for Chapter 1.) These have

an input tape and an output tape, which they can use to relate strings in a set. While a

finite-state automaton accepts strings and defines a formal language with this set of

accepting strings, a finite state transducer relates strings in different sets making it

extremely useful in translation. If you put in strings formed by a set of alphabets, a finite

state transducer can output a string of morphemes, the fundamental unit in a language

in linguistics.

Here's a research paper presenting one use of transducers in a speech recognition

model: Transformer Transducer: A streamable Speech Recognition model with

Transformer Encoders and RNN-T LOSS

Read more about Chomsky’s Theory and Hierarchy: Natural Language Processing (NLP):

Chomsky’s Theories of Syntax, or watch an excellent video on it.

This blog post lists more applications of Natural Language Processing: 10 Applications

of Artificial Neural Networks in Natural Language Processing

https://arxiv.org/pdf/2002.02562.pdf
https://arxiv.org/pdf/2002.02562.pdf
https://medium.com/@ehfirst/natural-language-processing-nlp-chomskys-theories-of-syntax-92fb8fa3d035
https://medium.com/@ehfirst/natural-language-processing-nlp-chomskys-theories-of-syntax-92fb8fa3d035
https://www.youtube.com/watch?v=224plb3bCog
https://medium.com/@datamonsters/artificial-neural-networks-in-natural-language-processing-bcf62aa9151a
https://medium.com/@datamonsters/artificial-neural-networks-in-natural-language-processing-bcf62aa9151a

Security and Intractability

One of the most widely used cryptosystems for secure data transmission across the

internet is RSA. On very broad terms, it is based on the principle that it is “easy” to

multiply large numbers, but factoring large numbers is “very difficult”. In complexity

theory, the class that constitutes these “easy problems” is called P, and the class of the

“harder” problems is called NP.

Formally, the P class is constituted by problems that are solved in a polynomial time,

such that the variable that defines the time that will take the algorithm is size of the

input data. The NP class is composed of those problems in which the solution can be

verified in a polynomial time.

We currently have algorithms that can factorize numbers but these take exponential

time to solve as the input number gets larger. Yet verification can be done in a

polynomial time. Finding the factors of a number is a problem in the NP class, but could

it be in the P class? Or is it impossible? We actually don’t know! This is the big question

of P vs. NP. If they were, we would have a big problem. Broadly speaking, if this were

true, world security would definitely be compromised because many encryption

algorithms, including RSA, would be able to be solved in reasonably small times.

This blog post describes RSA and the importance of intractability in security here: RSA:

How Maths Will Protect Us While P!=NP

Watch this video to get a glance at complexity theorem:

https://www.youtube.com/watch?v=YX40hbAHx3s

https://medium.com/datio-big-data/rsa-how-maths-will-protect-us-while-p-np-1b29ca6bff82
https://medium.com/datio-big-data/rsa-how-maths-will-protect-us-while-p-np-1b29ca6bff82
https://www.youtube.com/watch?v=YX40hbAHx3s

Hardware Controllers

One of the many derivations of finite automata are Mealy and Moore machines.

However, rather than simply accepting or rejecting input strings, Mealy and Moore

machines generate outputs. In a Mealy machine, outputs are determined by both the

current input and the current state, whereas in a Moore machine, outputs are

determined by only the current state. As a result, we can construct a Mealy machine,

which is equivalent to another Moore machine, using fewer states making it respond

faster to inputs. This would be important in a hardware controller as many behaviors are

determined by the “clock”. Mealy and Moore machines are commonly used in a

controller written for hardware designs and are studied in CSE 140.

These George Mason University slides give an overview of how hardware designers use

Mealy and Moore machines:

https://ece.gmu.edu/coursewebpages/ECE/ECE545/F10/viewgraphs/ECE545_lecture1

2_Controller_6.pdf

This blog post describes a digital clock design with Verilog(a hardware description

language):

http://eceprojectsbtechstds.blogspot.com/2018/11/digital-clock-using-verilog.html

Computer Graphics: L-System Procedural Plant Generation

Context-Free Grammars take an essential role in procedural plant generation for

computer-generated graphics. A way to generate random plants procedurally is using a

method called L-System. It uses the recursive nature in plants to grow a single starting

point into a tree, leaves, etc. under certain constraints. In fact, L-System can be used to

generate a lot of recursive shapes.

https://ece.gmu.edu/coursewebpages/ECE/ECE545/F10/viewgraphs/ECE545_lecture12_Controller_6.pdf
https://ece.gmu.edu/coursewebpages/ECE/ECE545/F10/viewgraphs/ECE545_lecture12_Controller_6.pdf
http://eceprojectsbtechstds.blogspot.com/2018/11/digital-clock-using-verilog.html

Watch this video to learn more about generating plants with L-System

This research paper presents an application of 3D plant modeling with L-System:

Real-time 3D Plant Structure Modeling by L-System with Actual Measurement

Parameters

The Importance of the Halting Problem

The halting problem is the problem of determining whether a given program on a given

input will finish running (halt), or run forever (loop). Alan Turing proved this problem to

be unsolvable, or more accurately undecidable. This means that there does not exist a

machine that can always tell you (halt), if another machine will halt or not on a given

input.

This claim, although true, is very bold. Turing has shown a fundamental limitation on

what computers can possibly do, ever. Be it now, or a hundred years from now, there will

never be any computer program that can solve the Halting Problem.

Read about the halting problem and the limits of computers (and the coolest poem

about computer science): The Questions That Computers Can Never Answer

Sources

1. Penland, Jon. “Get Started with Regex: Regular Expressions Make Easy.”

WhoIsHostingThis.com, 12 Feb. 2019,

www.whoishostingthis.com/resources/regex/.

2. Campeanu, Cezar, et al. “ A Formal Study of Practical Regular Expressions.”

International Journal of Foundations of Computer Science,

http://137.149.157.5/Articles/index.php?aid=1.

https://www.youtube.com/watch?v=0eXg4B1feOY&t=306s
https://www.bioquest.org/products/files/13157_Real-time%203D%20Plant%20Structure%20Modeling%20by%20L-System.pdf
https://www.bioquest.org/products/files/13157_Real-time%203D%20Plant%20Structure%20Modeling%20by%20L-System.pdf
https://www.wired.com/2014/02/halting-problem/

3. Kozliner, Evan. “Algorithmic Beauty: An Introduction to Cellular Automata.”

Medium, Towards Data Science, 7 Feb. 2020,

towardsdatascience.com/algorithmic-beauty-an-introduction-to-cellular-automat

a-f53179b3cf8f.

4. Young, Michael J. “ Typical Uses of Cellular Automata.” Mjyonline, 12 Nov. 2006,

www.mjyonline.com/CellularAutomataUses.htm.

5. Zhang, Qian, et al. “TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH

RECOGNITION MODEL WITH TRANSFORMER ENCODERS AND RNN-T LOSS.”

ArXiv, 14 Feb. 2020, https://arxiv.org/pdf/2002.02562.pdf.

6. Ozkural, Eray. “Natural Language Processing (NLP): Chomsky's Theories of

Syntax.” Medium, Medium, 27 Dec. 2017,

medium.com/@ehfirst/natural-language-processing-nlp-chomskys-theories-of-sy

ntax-92fb8fa3d035.

7. Davydova, Olga. “10 Applications of Artificial Neural Networks in Natural

Language Processing.” Medium, Medium, 26 Sept. 2017,

medium.com/@datamonsters/artificial-neural-networks-in-natural-language-proc

essing-bcf62aa9151a.

8. Lopez, Juan. “RSA: How Maths Will Protect Us While P!=NP.” Medium, Datio, 2

Apr. 2018,

medium.com/datio-big-data/rsa-how-maths-will-protect-us-while-p-np-1b29ca6bf

f82.

9. PROJECTS, ECE. “DIGITAL CLOCK USING VERILOG.” DIGITAL CLOCK USING

VERILOG, Blogger, 16 Nov. 2018,

eceprojectsbtechstds.blogspot.com/2018/11/digital-clock-using-verilog.html.

10.Viruchpintu, Rawin, and Noppadon Khiripet. “Real-Time 3D Plant Structure

Modeling by L-System with Actual Measurement Parameters.” Bioquest,

https://www.bioquest.org/products/files/13157_Real-time 3D Plant Structure

Modeling by L-System.pdf.

11.Bhatia, Aatish. “The Questions That Computers Can Never Answer.” Wired, Conde

Nast, 3 June 2017, www.wired.com/2014/02/halting-problem/.

