Agenda: 4.13, 4.17, 4.18, 4.21, 4.24 from Sipser.

4.13

A \in \mathcal{L}(R) \cap \mathcal{L}(S) \text{ are regular exprs} \Leftrightarrow L(R) \subseteq \mathcal{L}(S)^3.

Show that A is decidable.

Solution: $L(R) \subseteq \mathcal{L}(S) \Leftrightarrow L(R) \cap \overline{L(S)} = \emptyset$

Construct decider X as follows:

1. On input $\langle R, S \rangle$, where $R \& S$ are regular expr.
2. Construct DFA D_1 s.t. $L(D_1) = L(S)$
3. Construct DFA D_2 s.t. $L(D_2) = L(P) \cap L(CR)$
4. Run the Turing Machine T on input $\langle Q \rangle$, where T decides E_{DFA}

If T accepts, accept. If T rejects, reject.

X is a decider because T is a decider. Also, X accepts $\langle R, S \rangle$ iff $L(R) \cap \overline{L(S)} = \emptyset \Leftrightarrow X$ accepts $\langle R, S \rangle$ iff $L(R) \subseteq \mathcal{L}(S)$

X rejects otherwise. \[
\therefore X \text{ decides } A, \text{ so } A \text{ is decidable.}
\]

4.17

Prove that E_{DFA} is decidable by testing the 2 DFAs on all strings up to a certain length. Also calculate a length that works.

Solution: Claim: If A & B are DFAs, then $L(A) = L(B)$ iff A & B accept the same strings up to length mn, where m is the # states in A & n is the # states in B.

An alternate way to state this claim: $L(A) \neq L(B) \Leftrightarrow A \& B$ differ on some string of length AT MOST mn.

Proof: Let \(t \) be the shortest string on which \(A \) & \(B \) differ.
(i.e \(A \) rejects & \(B \) accepts or vice versa).
Let \(l = |t| \).
Suppose towards contradiction, that \(l > mn \).
Let \(a_0, a_1, a_2, \ldots, a_l \) be the sequence of states that \(A \)
enters on input \(t \).
Let \(b_0, b_1, b_2, \ldots \) be the sequence of states that \(B \)
enters on input \(t \).
Since \(A \) has \(m \) states, \(B \) has \(n \) states, there are only
\(mn \) distinct pairs of the form \((a, b) \) where \(a \) is a state of \(A \)
& \(b \) is a state of \(B \).
However, there are \(l+1 \) pairs of the form \((a_i, b_j) \) &
by our assumption, \(l > mn \), so \(l+1 > mn \).
By the pigeonhole principle \(\exists i, j \) \((a_i, b_j) = (a_j, b_j) \) (which
means that \(a_i = a_j \& b_i = b_j \)).
Notice that if you remove, from \(t \), the substring from
position \(i \) to position \(j-1 \), you get a string (say \(t' \))
such that:

(a) \(|t'| < |t| \)

(b) \(A \) accepts \(t' \) iff \(A \) accepts \(t \) & \(B \) accepts \(t' \) iff \(B \) accepts \(t \).
We have found a string \(t' \), shorter than \(t \), on
which \(A \& B \) differ. But this contradicts the fact that
\(t \) is the shortest string on which \(A \& B \) differ. Since each
step followed logically from previous steps, our hypothesis
must be false.

\[l \leq mn. \]

\[\forall_{\text{DFA}} \text{ can be decided by testing the 2 DFAs on all strings up to length } mn. \]

4.18 Show that a language \(C \) is Turing-recognizable iff \(\exists D \), a decidable language, such that

\[C = \{ x \mid \exists y, \langle x, y \rangle \in D \}. \]

SOL: We need to prove both directions.

(a) Suppose that \(D \) exists and \(D \) is decided by some T.M. \(P \).

Build a T.M. \(R = \langle \rangle \) on input \(X \),

1. For each \(y \in \Sigma^* \)
2. Run \(P \) on input \(\langle x, y \rangle \)
3. If \(P \) accepts, accepts.

Clearly \(R \) recognizes \(C \), because if some input \(x \in C \), then \(\exists y \) such that \(\langle x, y \rangle \in D \). Such a \(y \) will be found in some finite number of steps. However if \(x \notin C \), then \(R \) does not halt.

If \(D \) decidable \(D \) such that \(C = \{ x \mid \exists y, \langle x, y \rangle \in D \} \), then \(C \) is Turing-recognizable.

(b) Suppose that \(C \) is recognizable, \& \(\exists \) T.M. \(M \) recognizing \(C \).

Define \(D = \{ \langle x, y \rangle \mid M \text{ accepts } x \text{ within } |y| \text{ steps} \} \).

For every \(x \in C \), \(\exists k \) such that \(M \) accepts \(x \) in \(k \) steps. Suppose \(y \in \Sigma^* \& |y| = k \), then \(\langle x, y \rangle \in D \).
However, for every $x \notin C$, no such k exists (since M will not accept x).

$C = \{ x \mid \exists y, \langle x, y \rangle \notin D \}$

(Also, D is decidable because on input $\langle x, y \rangle$, a decision for D would just have to run M on input x for y steps, accepting if M accepts & rejecting otherwise) \qed

4.21 \quad S = \{ \langle M \rangle \mid M \text{ is a DFA that accepts } W^k \text{ whenever it accepts } W \}$ Show that S is decidable.

Sol: If A is a language, let $A^R = \{ w^R \mid w \in A \}$.

Observation : if $\langle M \rangle \in S$, then $L(M) = L(M)^R$.

Construct T: M T = " On input $\langle M \rangle$, where M is a DFA

1. Construct DFA N recognizing $L(M)^R$.
 (To do this, first construct an NFA that recognizes $L(M)^R$. This can be done with the following steps:

 (a) Keep the same states as in M, & reverse the directions of all transitions in M.
 (b) Set the new accept state to be the start state of M.
 (c) Introduce a new start state (say q_0) & add ϵ-transitions from q_0 to every accept state of M.

 This NFA can then be converted to a DFA).

2. Run T.M F on input $\langle M, N \rangle$, where F decides E_{DFA}. If F accepts, accept. If F rejects, reject."
Clearly, T halts on every input (because F is a decider), and T only accepts $<m>$ if $L(m) = L(m)^R$.

Thus T decides S, so S is decidable.

4.24. Define a ‘useless state’ in a PDA to be a state that is never entered on any input string.

Let $S = \{ <p> \mid P \text{ is a PDA with useless states} \}$.

Prove that S is decidable.

Sol: Construct T.M T:

"on input $<p>$, where P is a PDA
1. For each state q of P.
2. Modify P so that q is the only accept state.
 (Let this modified PDA be denoted as P').
3. Run T.M F on input $<p'>$, where F decides E_{PDA}. If F accepts, accept. Else, continue.
4. All states have been identified as NOT useless, so reject."

If a state (q) is NOT useless, then it is reachable from the start state, so by making q the only accept state, there must be some string accepted by the modified PDA. So, if F tells us that $<p'>$ belongs to E_{PDA} (meaning $L(p') = \emptyset$), then q must be useless, so ACCEPT. If all states have been checked & T hasn't yet accepted, then reject.
T is a decider because it halts on every input & T decides Σ, so Σ is decidable. □