Recall: $A_{DFA} = \{ <M, w> \mid M \text{ is a DFA that accepts } w \}$

(a) Is $<M, 0100> \in A_{DFA}$?
Yes. On input 0100, M ends in state q, which is an accepting state.

(b) Is $<M, 011> \in A_{DFA}$?
No. On input 011, M ends in state q_2 which is not accepting.

(c) Is $<M> \in A_{DFA}$?
No. Does not type check.

(d) Is $<M, 0100> \in A_{REX}$? $A_{REX} = \{ <R, w> \mid R \text{ is a regular expression that generates } w \}$
No. Does not type check. M is a DFA, not a regular expression.

(e) Is $<M> \in E_{DFA}$?
No. $L(M) \neq \phi$, $\emptyset \in L(M)$.

(f) Is $<M, M> \in EQ_{DFA}$?
Yes. $L(M) = L(M)$.
4.3 \(\text{ALLDFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \} \).

Show that \(\text{ALLDFA} \) is decidable.

\[L(A) = \Sigma^* \Rightarrow \overline{L(A)} = \emptyset \]

Define Turing Machine \(M = \)

"On input \(\langle A \rangle \), where \(A \) is a DFA,"

1. Construct DFA \(\overline{A} \)
2. Run the TM \(F \) which decides \(\text{EDFA} \), on input \(\langle A \rangle \).
3. If \(F \) accepts, accept. If \(F \) rejects, reject."

\(M \) is a decider because \(F \) is a decider, \& \(M \) accepts \(\langle A \rangle \) iff \(L(A) = \emptyset \) i.e. \(L(A) = \Sigma^* \). \(M \) decides \(\text{ALLDFA} \), so \(\text{ALLDFA} \) is decidable.

\((4.4) \text{ AceCFA} = \{ \langle A \rangle \mid A \text{ is a CFG that generates } \varepsilon \} \)

Show that \(\text{AceCFA} \) is decidable.

Define Turing Machine \(M = \)

"On input \(\langle A \rangle \), where \(A \) is a CFG"

1. Run the TM \(F \) which decides \(\text{ACFG} \), on input \(\langle A, \varepsilon \rangle \).
2. If \(F \) accepts, accept. If \(F \) rejects, reject."

\(M \) is a decider because \(F \) is a decider, \& \(M \) accepts \(\langle A \rangle \) iff \(\text{ACFG} \) accepts \(\langle A, \varepsilon \rangle \) (i.e. \(A \) generates \(\varepsilon \)). \(M \) decides \(\text{ACFG} \).

\(\therefore \) \(\text{AceCFA} \) is decidable.
(4.5) \(\overline{E_{TM}} = \{ \langle M \rangle \mid M \text{ is a T.M., } L(M) = \emptyset \} \).

Show that \(\overline{E_{TM}} \) is recognizable.

\[\overline{E_{TM}} = \{ \langle M \rangle \mid M \text{ is a T.M., } L(M) \neq \emptyset \} \]

Define T.M. \(N = \langle \rangle \) on input \(\langle M \rangle \), where \(M \) is a T.M.

1. For \(i = 1, 2, 3, \ldots \) up to \(2^m \).
2. Run \(M \) for \(i \) steps on strings \(S_1, S_2, \ldots, S_i \) (the first \(i \) strings over the alphabet in shortlex order).
3. If \(M \) accepts, accept.

On input \(\langle M \rangle \), if \(L(M) \neq \emptyset \), there exists \(i, j \) such that \(S_i \) is accepted by \(M \) in \(j \) steps. \(N \) will eventually run \(M \) on input \(S_i \) for \(j \) steps & accept.

If \(L(M) = \emptyset \), then \(M \) does not accept any strings, so \(N \) simply loops, since no value of \(i \) will result in \(M \) accepting some string.

\(N \) recognizes \(\overline{E_{TM}} \), so \(\overline{E_{TM}} \) is recognizable.

(4.30) Let \(A = \{ \langle M_1 \rangle, \langle M_2 \rangle, \ldots \} \) be a Turing-recognizable language, where every \(M_i \) is a decider. Show that there exists a decidable language \(D \) not decided by any of the deciders \(M_i \).

We prove this by constructing a decidable language using diagonalization.
let \(S = \{ S_0, S_1, \ldots \} \) be the shortlex order of strings over the alphabet \(E \).

Observation: Since \(A \) is recognizable, there is some enumerator \(E \) that enumerates \(A \).

Construct T.M \(T = \) "On input \(w \)

1. Let \(i \) be the index of \(w \) in \(S \) (i.e. \(w = S_i \))
2. Use \(E \) to obtain \(\langle M_i \rangle \).
3. Run \(M_i \) on input \(w \).
4. If \(M_i \) accepts, reject. If \(M_i \) rejects, accept."

\(T \) is a decider because each \(M_i \) is a decider.

However \(\langle T \rangle \) doesn't appear in \(A \) because \(T \) differs from every \(M_i \) on at least one input - \(S_i \). \(\therefore \) \(L(T) \) is a decidable language not decided by any \(M_i \).