Agenda: Review session for finals

(i) NFA to DFA conversion

NFA (N):

```
 q1
|__\  a
  |   b
  |   e
 q2 ------- q3
 a, b
```

Equivalence DFA (D):

```
(0, 2, 8, 9, 9)
```

Start state of N: q1,
Start state of D: E(\{q1\}) = \{q1, q2\}

defined in Thm 1.39 (pg 56) Sipser
Accept state(s) of N: \{q_1\}

Accept state(s) of D: \{\{q_1\}, \{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_2, q_3\}\}

\text{Sample computation of transition function:}

$d'(\{q_1\}, a) = \emptyset$ because there is no transition defined for (q_1, a) in N.

$d'(\{q_3\}, a) = \{q_2\}$

$E(\{q_3\}) = \{q_1, q_2\}$ ✓
(2) Pumping Lemma for Regular Languages

A is a regular language

\[\exists p \text{ (pumping length) such that } \]

\[\forall s \in A, \text{ if } |s| \geq p, \text{ then } \]

\[\exists x, y, z \text{ such that } \]

\[S = xyz \]

\[|y| > 0 \]

\[|xy| \leq p \]

\[\forall i \geq 0, \ xy^iz \in A \]

Can be used to prove non-regularity.

i.e \(A \) is a regular language \(\Rightarrow \exists p \) s.t all strings \(s \in A \) with \(|s| \geq p \) can be pumped.

\(\forall p \exists s \in A, |s| > p, s \) cannot be pumped \(\Rightarrow \) \(A \) is NOT regular.

Example

Show that \(L = \text{REP}\{0^n1^n | n \geq 1\} \) is not regular.

- Let \(p \) be an arbitrary positive integer, \(w \), i.e. \(p \)

 is not the pumping length for \(L \).

- Let \(s = 2^p1^p2 \)
- We have:

 a) $S \in L$ because between every pair of successive 2s in S is a string in
 \[\{0^n1^n \mid n > 1\} \]

 b) $|S| = 2p+2 > p$ (since p is a positive integer)

- Consider strings x, y, z such that $S = xyz$, $|y| > 0$, $|xy| \leq p$

 Case (1) $x = \varepsilon$, $y = 2$, $z = 0^p1^2$

 \[xy yz = 220^p1^2 \notin L \]

 between these 2s is the string $\varepsilon \notin \{0^n1^n \mid n > 1\}$

 (2) $x = \varepsilon$, $y = 20^m$, $z = 0^{p-m}1^2$ ($0 < m < p$)

 \[xy yz = 20^m2^m0^{p-m}1^2 = 20^m20^p1^2 \notin L \]

 between these 2s is the string $0^m \notin \{0^n1^n \mid n > 1\}$

 (3) $x = 20^k$, $y = 0^m$, $z = 0^{p-m-k}1^2$ ($k > 0$, $0 < m < p$)

 \[xy yz = 20^k0^m0^m0^{p-m-k}1^2 \]

 \[= 20^{p+m}1^2 \notin L \] (similar reason)

 \[\therefore \text{For any } p, \text{ we have some counter example } S \text{ that cannot be pumped with pumping length } p. \]

 \[L \text{ is non-regular.} \]
For each regular language L, the language
$$\{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are DFAs} \land L(M_1) \subseteq L \land L(M_2) \subseteq \overline{L} \}$$
is decidable. True / False?

Sol: True.

- Use set identity $X \subseteq Y \iff X \cup Y = Y$
- Since L is regular, there is a DFA (say A) such that $L(A) = L$. Also, since regular languages are closed under complement, there is a DFA (say B) such that $L(B) = \overline{L}$.
- Since EQ_{DFA} is decidable, there is a $\text{TM} \ (\text{say } M_{\text{EQ}})$ that decides EQ_{DFA}.

Define $\text{TM } S =$

"on input W

1. If W is not a valid encoding $\langle M_1, M_2 \rangle$ of 2 DFAs then reject.
2. Construct DFA D_1; $L(D_1) = L(A) \cup L(M_1)$
3. Run M_{EQ} on input $\langle D_1, A \rangle$. If it rejects, reject.
4. Construct DFA D_2; $L(D_2) = L(B) \cup L(M_2)$
5. Run M_{EQ} on input $\langle D_2, B \rangle$. If it rejects, reject.
6. Accept.

(Cite sample solutions for full justification)
(4) Mapping reduction theorems / strategies & sample question.

If \(A \leq_m B \) then

(a) \(B \) is decidable \(\rightarrow \) \(A \) is decidable
(b) \(A \) is undecidable \(\rightarrow \) \(B \) is undecidable
(c) \(B \) is recognizable \(\rightarrow \) \(A \) is recognizable
(d) \(A \) is not recognizable \(\rightarrow \) \(B \) is not recognizable

We know:

- (a) \(A_{\text{TM}} \) is recognizable
- (b) \(\overline{A_{\text{TM}}} \) is not recognizable \(\implies \) \(A_{\text{TM}} \) is undecidable

To prove some language \(B \) is NOT recognizable:

- Show \(\overline{A_{\text{TM}}} \leq_m B \) (or) \(A_{\text{TM}} \leq_m \overline{B} \)

To prove some language \(B \) is NOT co-recognizable (i.e. \(\overline{B} \) is not recognizable)

- Show \(\overline{A_{\text{TM}}} \leq_m \overline{B} \) i.e. \(A_{\text{TM}} \leq_m B \)

To prove some language \(B \) is recognizable you can

- a) mapping reduce \(B \) to some known recognizable language
- or

- b) Construct a TM that recognizes \(B \).

(and similarly for proving \(B \) is decidable).
e.g. \(E_{\text{TM}} \) is not recognizable (Thm 5.30 Sipser)

Let's \(A_{\text{TM}} \leq_m \overline{E_{\text{TM}}} \)

\(F = " \text{on input } \langle m, w \rangle \text{ where } M \text{ is a TM, } w \text{ is a string} \)

1. Construct \(T \text{m } M_1 = " \text{on input } x, \text{ reject}" \).
2. Construct \(T \text{m } M_2 = " \text{on input } x \)
 1. Run \(M \) on input \(w \).
 2. If \(M \) accepts, accept.
3. Output \(\langle M_1, M_2 \rangle \)

If \(M \) accepts \(w \), \(M_2 \) accepts all strings so \(L(M_1) \neq L(M_2) \)
If \(M \) doesn't accept \(w \), \(M_2 \) does not accept any string, so \(L(M_1) = L(M_2) \)

(To show \(E_{\text{TM}} \) is not co-recognizable, change \(M_1 \) to "on any input, accept".)

5. Proof that \(\text{HALT}_{\text{TM}} \) is undecidable (pg 217 Sipser)

Suppose that \(\text{HALT}_{\text{TM}} \) is decidable, i.e. some \(T \text{m } H \) that decides it.

Construct \(T \text{m } S \) that decides \(A_{\text{TM}} \) as follows:

\(S = " \text{on input } \langle m, w \rangle \text{ where } M \text{ is a TM, } w \text{ is a string} \)

1. Run \(H \) on \(\langle m, w \rangle \). If \(H \) rejects, reject.
2. Simulate \(M \) on \(w \): If \(M \) accepts, accept.

If \(M \) rejects, reject.

This is a contradiction, since we know \(A_{TM} \) is not decidable.