DISCUSSION 04/12

For definitions, refer Sipser.

\(\Sigma = \{a, b\} \)

14 (a) \{w \mid \text{w has at least 3 'a's and at least 2 'b's}\}

Sol: We want the intersection of 2 DFAs \(M_1 \) & \(M_2 \)

- \(M_1 \) recognizes \(\{w \mid \text{w has at least 3 'a's}\} \)
- \(M_2 \) recognizes \(\{w \mid \text{w has at least 2 'b's}\} \)

![Diagram of DFAs M1 and M2](image)

M1

\[
\begin{align*}
& \overset{b}{\rightarrow} q_1 \\
& \overset{a}{\rightarrow} q_2 \\
& \overset{b}{\rightarrow} q_3 \\
\end{align*}
\]

M2

\[
\begin{align*}
& \overset{a}{\rightarrow} r_1 \\
& \overset{b}{\rightarrow} r_2 \\
& \overset{a}{\rightarrow} r_3 \\
\end{align*}
\]

\(M_1 \cap M_2 \)
1.4 (c) \{ w \mid w \text{ has an even number of } a \text{'s and } 1 \text{ or } 2 \text{ 'b's} \}

\[\text{Sol: Want } M_1 \cap M_2 \text{, where} \]

\[M_1 \text{ recognizes } \{ w \mid w \text{ has an even number of } a \text{'s} \} \]

\[M_2 \text{ recognizes } \{ w \mid w \text{ has } 1 \text{ or } 2 \text{ 'b's} \} \]

\[M_1 \cap M_2 \]

1.5 (c) Construct a DFA that recognizes

\[L = \{ w \mid w \text{ contains neither } ab \text{ nor } ba \} \]

The complement of this language is

\[\overline{L} = \{ w \mid w \text{ contains } ab \text{ or contains } ba \} \]
DFA that recognizes \overline{L}:

![DFA Diagram]

Complement this to get the DFA that recognizes L:

![Complemented DFA Diagram]

15(e) $\{ w | w \text{ is any string not in } (ab^+)^* \} = \overline{L}$

$\overline{L} = \{ w | w \text{ is in } (ab^+)^* \}$

![Complemented DFA Diagram]

recognizes \overline{L}

Complement this:

![Complemented DFA Diagram]

recognizes L
1.6 (i) Construct a DFA that recognizes
\(\{ w | \) every odd position of \(w \) is a 1 \}
over \(\Sigma = \{0, 1\} \)

Solution: \(\epsilon \) (empty string) BELONGs to this language.