Mapping Reduction

CSE 105 Week 9 Discussion

Deadlines and Logistics

- Test 2 next week (week 9)
- Do review quizzes on PrairieLearn
- HW 6 due 12/3/24 at 5pm (week 10)
- Project due 12/11/24 11am (final week)

Motivation

- We want to leverage our previous results of language properties
- Thus, we want to relate the "difficulty level" of one problem to another

If problem X is no harder than problem Y ...and if Y is **decidable** ...then X must also be **decidable**

If problem X is no harder than problem Y ...and if X is **undecidable** ...then Y must also be **undecidable**

"Problem X is no harder than problem Y" means "Can convert questions about membership in X to questions about membership in Y"

Mapping reduction & computable functions

Definition: A is mapping reducible to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A$ if and only if $f(x) \in B$.

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Intuition: $A \leq_m B$ means A is no harder than B, i.e. that the level of difficulty of A is less than or equal the level of difficulty of B. "Can convert questions about membership in A to questions about membership in B"

Computable functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** means there is some Turing machine such that, for each x, on input x the Turing machine halts with exactly f(x) followed by all blanks on the tape

Warm up: If A is mapping reducible to B then the complement of A is mapping reducible to the complement of B.

Theorems 5.22, 5.28: If A is mapping reducible to B... ... and B is decidable, then A is decidable. ... and A is undecidable, then B is undecidable. ... and B is recognizable, then A is recognizable. ... and A is unrecognizable, then B is unrecognizable.

Mapping reduction practice

RQ8.10. Properties of mapping reductions

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Select all and only the true statements below.

- \Box For all languages A and B, if A mapping reduces to B then B mapping reduces to A.
- Every language mapping reduces to its complement.
- $\hfill \Sigma^*$ mapping reduces to every nonempty language over Σ .
- Every decidable language mapping reduces to \emptyset .
- \bigcirc Ø mapping reduces to every nonempty language over Σ .
- For all languages A and B and C, if A mapping reduces to B and B mapping reduces to C then A mapping reduces to C.

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Fix $\Sigma = \{0,1\}$ throughout this question.

V

Is each of the stated mapping reductions witnessed by the given function?

 $m{arphi}$ $\{0,1\}\leq_m \{00,10\}$ is witnessed by the computable function $g:\Sigma^* o\Sigma^*$ given by g(x)=x0 for all x

 $\{00,10\}\leq_m \{0,1\}$ is witnessed by the computable function $f:\Sigma^* o\Sigma^*$ given by

$$f(x) = egin{cases} 0 & ext{if } x = y0 ext{ for some } y \in \{0,1\} \ 00 & ext{otherwise} \end{cases}$$

 $\{0,1\} \leq_m \{00,10\}$ is witnessed by the computable function $f: \Sigma^* \to \Sigma^*$ given by $f(x) = \begin{cases} 0 & ext{if } x = y0 ext{ for some } y \in \{0,1\} \\ 00 & ext{otherwise} \end{cases}$

1. The mapping reduction relationship is not true.

- 2. The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- 3. This mapping reduction is witnessed by this computable function.

Halting Problem

Halting problem

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine, } w \text{ is a string, and } M \text{ halts on } w \}$

Prove : $A_{TM} \leq_m HALT_{TM}$

 $HALT_{TM} \leq_m A_{TM}$

^A**5.7** Show that if A is Turing-recognizable and $A \leq_{m} \overline{A}$, then A is decidable.

Ch. 5 Exercises pg. 239

Fix $\Sigma = \{0, 1\}$ and define $const_{out} \in \Sigma^*$ to be a string constant that is not the code of any pair of the form $\langle M, w \rangle$, where M is a Turing machine and w is a string.

Consider the computable function defined by the high-level description of the TM computing it:

F = "On input x:

```
If x ≠ ⟨M, w⟩ for any Turing machine M and string w, output constout.
Otherwise, let M be the Turing machine and w the string such that x = ⟨M, w⟩.
Define the Turing machine M' as :

        "On input y,
        Run M on y<sup>R</sup>. If it accepts, accept. If it rejects, reject."

Output ⟨M', w<sup>R</sup>⟩."
```

There is a string x for which $x \neq F(x)$

- \Box For all strings x, if $x \in HALT_{TM}$ then $F(x) \in HALT_{TM}$

```
\Box There is a string x for which x=F(x)
```

RQ9.1. Complementation and mapping reduction

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$.

- \bigcirc For any languages X and Y, if $X \leq_m Y$ then $\overline{X} \leq_m \overline{Y}$.
- \bigcirc For each language $X, X \leq_m \overline{X}$. \bigcirc For any languages X and Y, if $X \leq_m Y$ then $\overline{Y} \leq_m \overline{X}$.

O None of the above

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x \in \Sigma^*$, $x \in A$ iff $f(x) \in B$.

Also recall that

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a Turing machine, } w \text{ is a string and } M \text{ accepts } w \}$

What can we conclude from knowing that A_{TM} mapping reduces to a language L? (Select all and only that apply)

 \Box L is infinite.

 \Box L is undecidable.

Select all possible options that apply.