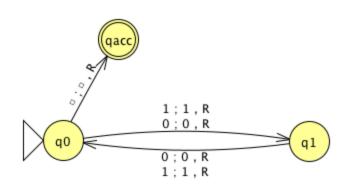
Week 8 Monday Review Quiz

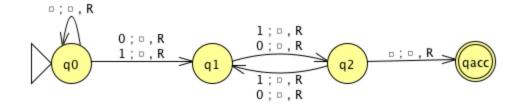
Q1 ATM: examples 2 Points

Consider the following Turing machines over the alphabet $\{0,1\}$, whose state diagrams are below.

M1



M2

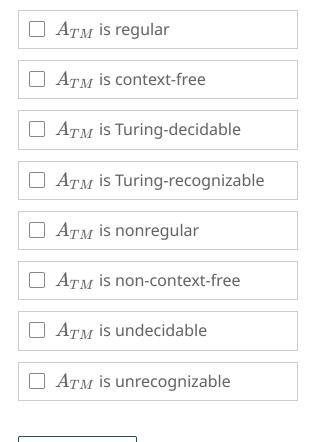


Select all and only true statements below.

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	

Q2 ATM: "difficulty" 2 Points

Select all and only true statements below.



Save Answer

Q3 Diagonalization proof 2 Points

What are the roles of the Turing machines R_{ATM} , M_{ATM} and D in the proofs that A_{TM} is recognizable but not decidable?

 R_{ATM} and M_{ATM} both try to decide A_{TM} so they're not real Turing machines.

 R_{ATM} is a well-defined Turing machine (but not a decider) that recognizes A_{TM} . M_{ATM} and D are deciders that could be built if we assume towards a contradiction that A_{TM} is decidable.

Save Answer

Q4 Closure 1 Point

Select all and only true statements below.

The class of regular languages is closed under complementation
The class of context-free languages is closed under complementation
The class of decidable languages is closed under complementation
The class of recognizable languages is closed under complementation
The class of undecidable languages is closed under complementation
The class of unrecognizable languages is closed under complementation
Save Answer

Q5 Co-recognizable 3 Points

A language L over an alphabet Σ is called co-recognizable if its complement, defined as $\Sigma^* \setminus L = \{x \in \Sigma^* \mid x \notin L\}$, is Turing-recognizable

Theorem 4.22 in the book says that a language is decidable if and only if it is both recognizable and co-recognizable.

Select all and only the sets below that are co-recognizable.

$\Box A_{DFA}$
$\Box A_{NFA}$
$\Box A_{REX}$
$\Box A_{PDA}$
$\Box A_{TM}$

Week 8 Wednesday Review Quiz

Q1 Computable functions 3 Points

Recall that a function $f: \Sigma^* \to \Sigma^*$ is computable means that there is some Turing machine M such that, on every input w, the computation of M on w halts with just f(w) on its tape.

Q1.1 (a) 2 Points

Select all and only the functions below that are computable.

 \Box The function $f_1: \{0,1\}^* \to \{0,1\}^*$ such that $f_1(\varepsilon) = 001$ and $f_1(x) = \varepsilon$ for all $x \neq \varepsilon$.

 \Box The function $f_2: \{0,1\}^* \to \{0,1\}^*$ such that $f_2(x) = 0x0$ (i.e. the concatenation of 0 with x followed by a 0).

Save Answer

Q1.2 (b) 1 Point

True or False: The function

$$f_3(x) = egin{cases} 0 & ext{if it will rain on campus during the CSE 105 final} \ 1 & ext{otherwise} \end{cases}$$

is a computable function with domain Σ^* and codomain Σ^*

- \bigcirc False, because the function f_3 is not well-defined.
- \bigcirc False, because the function f_3 cannot be computed by any Turing machine.
- \bigcirc True, because the function f_3 is a constant function (even though we may not know right now which constant value it outputs)

Save Answer

Q2 Mapping reduction

7 Points

Recall that mapping reduction is defined in section 5.3: The problem A mapping reduces to B means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all $x\in \Sigma^*$, $x\in A$ iff $f(x)\in B.$

A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Fix $\Sigma = \{0, 1\}$ throughout this question.

Q2.1

1 Point

Consider the statement: $\emptyset \leq_m \emptyset$ is witnessed by the computable function id: $\Sigma^* o \Sigma^*$ given by id(x) = x for all x.

- \bigcirc This is a true statement.
- O The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- O The mapping reduction relationship is not true.

Q2.2 1 Point

Consider the statement: $\Sigma^* \leq_m \Sigma^*$ is witnessed by the computable function id: $\Sigma^* \to \Sigma^*$ given by id(x) = x for all x.

 \bigcirc This is a true statement.

- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Save Answer

Q2.3

1 Point

Consider the statement: $\Sigma^* \leq_m \emptyset$ is witnessed by the computable function id: $\Sigma^* \to \Sigma^*$ given by id(x) = x for all x.

- \bigcirc This is a true statement.
- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Save Answer

Q2.4

1 Point

Consider the statement: $\{0,1\} \leq_m \{00,10\}$ is witnessed by the computable function $id: \Sigma^* \to \Sigma^*$ given by id(x) = x for all x.

- \bigcirc This is a true statement.
- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Q2.5 1 Point

Consider the statement: $\{0,1\} \leq_m \{00,10\}$ is witnessed by the computable function $g: \Sigma^* \to \Sigma^*$ given by g(x) = x0 for all x.

- \bigcirc This is a true statement.
- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Save Answer

Q2.6

1 Point

Consider the statement: $\{00, 10\} \leq_m \{0, 1\}$ is witnessed by the computable function $g: \Sigma^* \to \Sigma^*$ given by g(x) = x0 for all x.

- \bigcirc This is a true statement.
- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Save Answer

Q2.7

1 Point

 $\begin{array}{l} \text{Consider the statement: } \{00,10\} \leq_m \{0,1\} \text{ is witnessed by the computable} \\ \text{function } h: \Sigma^* \rightarrow \Sigma^* \text{ given by } h(x) = \begin{cases} x & \text{if } x = \varepsilon \\ \text{leftmost character of } x & \text{otherwise} \end{cases} \end{array}$

- \bigcirc This is a true statement.
- \bigcirc The mapping reduction relationship is true but the given function does not witness this mapping reduction.
- \bigcirc The mapping reduction relationship is not true.

Week 8 Friday Review Quiz

Q1 Mapping reduction identities 5 Points

Fix $\Sigma = \{0,1\}$ for this question.

Q1.1 2 Points

Select all and only the true statements.

```
\Box For languages A, B if A mapping reduces to B and B mapping reduces to A then A = B.
```

 \Box For languages A, B, C if A mapping reduces to B and B mapping reduces to C then A mapping reduces to C.

For languages A, B if A mapping reduces to B then B mapping reduces to A.

Save Answer

Q1.2 1 Point

True or false? "Every language mapping reduces to its complement."

○ True

○ False

Q1.3 1 Point

True or false? "Every decidable language mapping reduces to \emptyset ."

 \bigcirc True

 \bigcirc False

Q1.4

1 Point

True or false? " Σ^* mapping reduces to every nonempty language over Σ "

 \bigcirc True

○ False

Save Answer

Q2 Computable functions for mapping reductions 5 Points

Fix $\Sigma = \{0,1\}$ and define $const_{out} \in \Sigma^*$ to be a string constant that is not the code of any pair of the form $\langle M, w \rangle$, where M is a Turing machine and w is a string.

Consider the computable function defined by the high-level description of the TM computing it:

F = "On input x:

1. If $x
eq \langle M, w
angle$ for any Turing machine M and string w, output $const_{out}.$

- 2. Otherwise, let M be the Turing machine and w the string such that $x=\langle M,w
 angle.$
- 3. Define the Turing machine M^\prime as :

"On input y,

- 1. Run M on y^R . If it accepts, accept. If it rejects, reject."
- 4. Output $\langle M', w^R
 angle$."

Q2.1 1 Point

True or False? "For all strings x, if $x \in A_{TM}$ then $F(x) \in HALT_{TM}$ "

 \bigcirc True

 \bigcirc False

Save Answer

Q2.2 1 Point

True or False? "For all strings x, if $F(x) \in HALT_{TM}$ then $x \in A_{TM}$ "

 \bigcirc True

 \bigcirc False

Save Answer

Q2.3

1 Point

True or False? "For all strings x, if $x \in HALT_{TM}$ then $F(x) \in A_{TM}$ "

 \bigcirc True

 \bigcirc False

Q2.4 1 Point

True or False? For all strings x, if $F(x) \in A_{TM}$ then $x \in HALT_{TM}$

 \bigcirc True

 \bigcirc False

Save Answer

Q2.5 1 Point

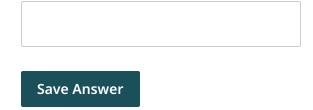
Does F(x) witness either of the mapping reduction $HALT_{TM} \leq_m A_{TM}$ or $A_{TM} \leq_m HALT_{TM}$?

- \bigcirc Yes, it witnesses both of these mapping reduction.
- \bigcirc Yes, it witnesses $HALT_{TM} \leq_m A_{TM}$ (but not the other)
- \bigcirc Yes, it witnesses $A_{TM} \leq_m HALT_{TM}$ (but not the other)
- \bigcirc No, it does not witness either of these mapping reductions, but there are other computable functions that do.
- \bigcirc No, it does not witness either of these mapping reductions, and at least one of these mapping reductions does not hold.

Q3 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)



Save All Answers

Submit & View Submission >