Week 8 Monday Review Quiz

Q1 ATM: examples

2 Points
Consider the following Turing machines over the alphabet $\{0,1\}$, whose state diagrams are below.

M1

M2

Select all and only true statements below.
$\square\langle M 1\rangle \in A_{T M}$
$\square\langle M 1\rangle \in \overline{A_{T M}}$$\langle M 2, \varepsilon\rangle \in A_{T M}$
$\square\langle M 2,0\rangle \in A_{T M}$
$\square\langle M 2,00\rangle \in A_{T M}$

Q2 ATM: "difficulty"
 2 Points

Select all and only true statements below.
$A_{T M}$ is regular
$A_{T M}$ is context-free$A_{T M}$ is Turing-decidable
$A_{T M}$ is Turing-recognizable

$A_{T M}$ is nonregular

$A_{T M}$ is non-context-free

$A_{T M}$ is undecidable$A_{T M}$ is unrecognizable

```
Save Answer
```


Q3 Diagonalization proof 2 Points

What are the roles of the Turing machines $R_{A T M}, M_{A T M}$ and D in the proofs that \$A_\{TM\}\$ is recognizable but not decidable?
$R_{A T M}$ and $M_{A T M}$ both try to decide $A_{T M}$ so they're not real Turing machines.
$R_{A T M}$ is a well-defined Turing machine (but not a decider) that recognizes $A_{T M}$. $M_{A T M}$ and D are deciders that could be built if we assume towards a contradiction that $A_{T M}$ is decidable.

Q4 Closure

1 Point
Select all and only true statements below.
The class of regular languages is closed under complementationThe class of context-free languages is closed under complementationThe class of decidable languages is closed under complementation

The class of recognizable languages is closed under complementation

The class of undecidable languages is closed under complementation

The class of unrecognizable languages is closed under complementation

Save Answer

Q5 Co-recognizable

3 Points

A language L over an alphabet Σ is called co-recognizable if its complement, defined as $\Sigma^{*} \backslash L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$, is Turing-recognizable

Theorem 4.22 in the book says that a language is decidable if and only if it is both recognizable and co-recognizable.

Select all and only the sets below that are co-recognizable.
$\square A_{D F A}$
$\square A_{N F A}$
$\square A_{R E X}$
$\square A_{P D A}$
$\square A_{T M}$

Week 8 Wednesday Review Quiz

Q1 Computable functions

3 Points
Recall that a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable means that there is some Turing machine M such that, on every input w, the computation of M on w halts with just $f(w)$ on its tape.

Q1.1 (a)
2 Points
Select all and only the functions below that are computable.
The function $f_{1}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that $f_{1}(\varepsilon)=001$ and $f_{1}(x)=\varepsilon$ for all $x \neq \varepsilon$.

The function $f_{2}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that $f_{2}(x)=0 x 0$ (i.e. the concatenation of 0 with x followed by a 0).

Q1.2 (b)
1 Point

True or False: The function
$f_{3}(x)= \begin{cases}0 & \text { if it will rain on campus during the CSE } 105 \text { final } \\ 1 & \text { otherwise }\end{cases}$
is a computable function with domain Σ^{*} and codomain Σ^{*}
False, because the function f_{3} is not well-defined.
False, because the function f_{3} cannot be computed by any Turing machine.
True, because the function f_{3} is a constant function (even though we may not know right now which constant value it outputs)

Save Answer

Q2 Mapping reduction 7 Points

Recall that mapping reduction is defined in section 5.3: The problem A mapping reduces to B means there is a computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that for all $x \in \Sigma^{*}, x \in A$ iff $f(x) \in B$.
A computable function that makes the iff true is said to witness the mapping reduction from A to B.

Fix $\Sigma=\{0,1\}$ throughout this question.

Q2.1
1 Point
Consider the statement: $\emptyset \leq_{m} \emptyset$ is witnessed by the computable function $i d$:
$\Sigma^{*} \rightarrow \Sigma^{*}$ given by $i d(x)=x$ for all x.
This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.The mapping reduction relationship is not true.

Q2.2
1 Point
Consider the statement: $\Sigma^{*} \leq_{m} \Sigma^{*}$ is witnessed by the computable function $i d$:
$\Sigma^{*} \rightarrow \Sigma^{*}$ given by $i d(x)=x$ for all x.This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.

The mapping reduction relationship is not true.

Save Answer

Q2.3
1 Point
Consider the statement: $\Sigma^{*} \leq_{m} \emptyset$ is witnessed by the computable function $i d$: $\Sigma^{*} \rightarrow \Sigma^{*}$ given by $i d(x)=x$ for all x.

This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.
The mapping reduction relationship is not true.

Save Answer

Q2.4

1 Point
Consider the statement: $\{0,1\} \leq_{m}\{00,10\}$ is witnessed by the computable function id : $\Sigma^{*} \rightarrow \Sigma^{*}$ given by $\operatorname{id}(x)=x$ for all x.

This is a true statement.The mapping reduction relationship is true but the given function does not witness this mapping reduction.

The mapping reduction relationship is not true.

Q2.5
1 Point
Consider the statement: $\{0,1\} \leq_{m}\{00,10\}$ is witnessed by the computable function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ given by $g(x)=x 0$ for all x.This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.The mapping reduction relationship is not true.

Save Answer

Q2.6

1 Point
Consider the statement: $\{00,10\} \leq_{m}\{0,1\}$ is witnessed by the computable function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ given by $g(x)=x 0$ for all x.

This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.The mapping reduction relationship is not true.

Save Answer

Q2. 7

1 Point
Consider the statement: $\{00,10\} \leq_{m}\{0,1\}$ is witnessed by the computable function $h: \Sigma^{*} \rightarrow \Sigma^{*}$ given by $h(x)= \begin{cases}x & \text { if } x=\varepsilon \\ \text { leftmost character of } x & \text { otherwise }\end{cases}$This is a true statement.
The mapping reduction relationship is true but the given function does not witness this mapping reduction.

The mapping reduction relationship is not true.

Week 8 Friday Review Quiz

Q1 Mapping reduction identities

5 Points
Fix $\Sigma=\{0,1\}$ for this question.

Q1.1

2 Points
Select all and only the true statements.
For languages A, B if A mapping reduces to B and B mapping reduces to A then $A=B$.

For languages A, B, C if A mapping reduces to B and B mapping reduces to C then A mapping reduces to C.

For languages A, B if A mapping reduces to B then B mapping reduces to A.

Save Answer

Q1.2

1 Point
True or false? "Every language mapping reduces to its complement."
TrueFalse

Q1.3
1 Point
True or false? "Every decidable language mapping reduces to Ø."TrueFalse

Save Answer

Q1.4

1 Point
True or false? " Σ^{*} mapping reduces to every nonempty language over Σ "
True

Save Answer

Q2 Computable functions for mapping reductions 5 Points

Fix $\Sigma=\{0,1\}$ and define const $_{\text {out }} \in \Sigma^{*}$ to be a string constant that is not the code of any pair of the form $\langle M, w\rangle$, where M is a Turing machine and w is a string.

Consider the computable function defined by the high-level description of the TM computing it:
$F=$ "On input x :

1. If $x \neq\langle M, w\rangle$ for any Turing machine M and string w, output const ${ }_{\text {out }}$.
2. Otherwise, let M be the Turing machine and w the string such that $x=\langle M, w\rangle$.
3. Define the Turing machine M^{\prime} as:
"On input y,
4. Run M on y^{R}. If it accepts, accept. If it rejects, reject."
5. Output $\left\langle M^{\prime}, w^{R}\right\rangle$."

Q2.1
1 Point
True or False? "For all strings x, if $x \in A_{T M}$ then $F(x) \in H A L T_{T M}$ "TrueFalse

Save Answer

Q2.2
1 Point
True or False? "For all strings x, if $F(x) \in H A L T_{T M}$ then $x \in A_{T M "}$TrueFalse

Save Answer

Q2.3

1 Point
True or False? "For all strings x, if $x \in H A L T_{T M}$ then $F(x) \in A_{T M}$ "
TrueFalse

Q2.4
1 Point
True or False? For all strings x, if $F(x) \in A_{T M}$ then $x \in H A L T_{T M}$TrueFalse

Q2.5
1 Point
Does $F(x)$ witness either of the the mapping reduction $H A L T_{T M} \leq_{m} A_{T M}$ or $A_{T M} \leq_{m} H A L T_{T M} ?$Yes, it witnesses both of these mapping reduction.Yes, it witnesses $H A L T_{T M} \leq_{m} A_{T M}$ (but not the other)Yes, it witnesses $A_{T M} \leq_{m} H A L T_{T M}$ (but not the other)No, it does not witness either of these mapping reductions, but there are other computable functions that do.

No, it does not witness either of these mapping reductions, and at least one of these mapping reductions does not hold.

Save Answer

Q3 Feedback

0 Points
Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)
\square

[^0]
[^0]: Save Answer

