Computational Problems,
Mapping Reduction

CSE 105 Week 8 Discussion

Deadlines and Logistics

Test 2 next week (week 9)

Do review quizzes on PrairieLearn
HW 6 due 12/3/24 at 5pm (week 10)
Project due 12/11/24 11am (final week)

http://us.prairielearn.com/

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

e Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or, (Q,X.T,4.qo. Qaccepts Greject)

e Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

e High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

e Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state; or, (Q,X.I", 4. o, Gaccept: Greject)

e Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.

e High-level description: description of algorithm (precise sequence of instructions), without im-
plementation details of machine. As part of this description, can “call” and run another TM as a
subroutine.

Properties of languages

1. Regular
a. Recognized by a DFA/NFA
b. Described by a regex

2. Context free

a. Recognized by a PDA
b. Generated by a CFG

3. (Turing) Decidable
a. Canbe decided by a Tm

4. (Turing) Recognizable

a. Can be recognized by a Tm

Context-free

Algorithm computation

Church-Turing Thesis

Anything that is computable is computable with a Turing machine
because any method of computation using finite time and finite
resources will be equally expressive to that of a Turing machine.

Vocabulary check

1. Are all decidable languages recognizable?
2. Iflanguage A is recognizable and language B is decidable, is |Al > |BI
3. If Mis a Turing machine, what is <M>?

Representations of algorithms

To decide these problems, we need to represent the

objects of interest as strings For inputs that aren't strings,

we have to encode the object
(represent it as a string) first

To define TM M:

~On INputw .2 Notation:
. <0O> is the string that represents (encodes) the
object O

<O, ..., O,> is the single string that
represents the list of objects Oy, ..., O,

Turing Decidable Languages

Recap : Turing decidable languages are closed under complementation

Turing Decidable Languages - Recap

1. If alanguage is decidable if and only if it is co-recognizable and recognizable.

2. Iftwo languages over a fixed alphabet are turing-decidable, then their union is
decidable as well

3. Iftwo languages over a fixed alphabet are turing-recognizable, then their union
is recognizable as well

Computational Problems

Computational problems

Acceptance problem

...for DFA

..for NFA
... for regular expressions
...for CFG

..for PDA

Apra
ANFa
Arpx
Acre
Appa

,w) | B is a DFA that accepts input string w}
,w) | B is a NFA that accepts input string w}

w) | R is a regular expression that generates input string w}

w) | G is a context-free grammar that generates input string w}
w) | B is a PDA that accepts input string w}

{
{
{
{
{

Language emptiness testing

...for DFA

..for NFA
... for regular expressions
...for CFG

..for PDA

Epra
Enra
Erex
Ecrc
Eppa

{(A) | Ais a DFA and L(A) = 0}

{(A) | Ais a NFA and L(A) =0}

{(R) | R is a regular expression and L(R) = 0}
{{(G) | G is a context-free grammar and L(G) = 0}
{(A) | Ais a PDA and L(A) = 0}

Language equality testing

...for DFA

..for NFA
... for regular expressions
...for CFG

..for PDA

EQDFA
EQNFA
EQrex
EQCFG
EQPDA

{(A,B) | A and B are DFAs and L(A) = L(B)}

{(A,B) | A and B are NFAs and L(A) = L(B)}

{(R,R) | R and R’ are regular expressions and L(R) = L(R')}
{{(G,G") | G and G’ are CFGs and L(G) = L(G")}

{(A,B) | A and B are PDAs and L(A) = L(B)}

Computational problems for Turing machines

Acceptance problem
for Turing machines Ary {(M,w) | M is a Turing machine that accepts input string w}

Language emptiness testing
for Turing machines Ery, {(M) | M is a Turing machine and L(M) = (}}

Language equality testing
for Turing machines EQry {(My, Ms) | M; and M, are Turing machines and L(M;) = L(M;)}

What is Ap, ?
A Turing machine whose input is codes of TMs and strings.
A set of pairs of TMs and strings.
A set of strings that encode TMs and strings.
Not well defined.
| don't know.

A_,, is recognizable but undecidable

e A, is Turing recognizable
o We can define a Turing machine that recognizes A,

e A, isnot Turing decidable
o Proof by contradiction (diagonalization proof)

Define the TM N = "On input <M,w>:
1. Simulate M on w.
2. If M accepts, accept. If M rejects, reject.”

Which of the following statements is true?

A. N decides Aqy, 5. N recognizes Aqy

C. N always halts 0. More than one of the above.
=. I don't know

A.,, is recognizable but undecidable

e A, is Turing recognizable
o We can define a Turing machine that recognizes A,

e A, isnot Turing decidable
o Proof by contradiction (diagonalization proof)

Proof: Suppose towards a contradiction that there is a Turing machine that decides A7);. We call this

presumed machine Ma7),.
Define a new Turing machine using the high-level description:

D =*“ On input (M), where M is a Turing machine:
1. Run Murp on (M, (M)).
2. If M7y accepts, reject; if M a7y rejects, accept.”

What is the result of the computation of D on (D)?

A_,, is recognizable but undecidable

e Arp) is recognizable.

e A7 is not decidable.

e Ar) is not recognizable.

e Ar)s is not decidable.

A.,, is recognizable but undecidable

e Arpys is recognizable.

e A7y is not decidable.

e Ap)s is not recognizable.

e Ar,s is not decidable.

A language being decidable means “we can say both
yes and no answers about string membership in a
language in finite time.”

A language being recognizable means “we can say yes
about string membership in a language in finite time.”

Anytime we can prove that a set is undecidable yet
recognizable, its complement will be unrecognizable.

Closure claims

RQ8.5. Closure and nonclosure

Recall the definitions: A language L over an alphabet X is called recognizable if there is some Turing machine M such that

L = L(M). A language L over an alphabet X is called co-recognizable if its complement, defined as
¥*\L={xze€X*|z¢& L}, is Turing-recognizable. A language L over an alphabet X is called {\bf unrecognizable} if there is
no Turing machine that recognizes it.

Select all and only true statements below.

The class of unrecognizable languages is closed under complementation.
The class of recognizable languages is closed under complementation.
The class of decidable languages is closed under complementation.

The class of undecidable languages is closed under complementation.

Mapping Reduction

Motivation

e We want to leverage our previous results of language properties
e Thus, we want to relate the “difficulty level” of one problem to another

|”
If problem X is no harder than problem Y

...and if Y is decidable
...then X must also be decidable

If problem X is no harder than problem Y
...and if X is undecidable
...then Y must also be undecidable

“Problem X is no harder than problem Y” means

“Can convert questions about membership in X to questions about
membership in Y”

Mapping reduction & computable functions

Definition: A is mapping reducible to B means there is a computable function f : ¥* — ¥* such that

for all strings x in X%,
z €A if and only if f(z) € B.

Notation: when A is mapping reducible to B, we write A <,,, B.

Intuition: A <,, B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B. “Can convert questions about membership in A to questions about membership in B”

Computable functions

Definition: A function f : ¥* — ¥* is a computable function means there is some Turing machine such
that, for each z, on input the Turing machine halts with exactly f(z) followed by all blanks on the tape

Computable functions example

Computable functions

Definition: A function f : ¥* — X* is a computable function means there is some Turing machine such
that, for each z, on input x the Turing machine halts with exactly f(z) followed by all blanks on the tape

Define a Turing machine that computes the following function:

The function that maps strings that are not the codes of NFAs to the empty string and that maps strings
that code NFAs to the code of a DFA that recognizes the language recognized by the NFA produced by the

macro-state construction from Chapter 1.

“No harder than”?

Which of the following statements are true?

{011] i,j >=0} is no harder than Aq,
A, is no harder than itself
. Apga is no harder than {ww | w is a string over {0,1}}

EQpga is No harder than Apg,
All of the above

moowy

Mapping reduction practice

RQ8.10. Properties of mapping reductions

Recall that mapping reduction is defined in section 5.3: For languages A and B over X, we say that the problem A mapping
reduces to B means there is a computable function f : ¥* — X* such that for allz € X*, z € Aiff f(z) € B. A computable
function that makes the iff true is said to witness the mapping reduction from A to B.

Select all and only the true statements below.

For all languages A and B, if A mapping reduces to B then B mapping reduces to A.
Every language mapping reduces to its complement.
>>* mapping reduces to every nonempty language over ..

Every decidable language mapping reduces to ().

