Computational Problems, Mapping Reduction

CSE 105 Week 8 Discussion

Deadlines and Logistics

- Test 2 next week (week 9)
- Do review quizzes on **PrairieLearn**
- HW 6 due 12/3/24 at 5pm (week 10)
- Project due 12/11/24 11am (final week)

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- High-level description: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Multiple descriptions

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- High-level description: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Properties of languages

- 1. Regular
	- a. Recognized by a DFA/NFA
	- b. Described by a regex

2. Context free

- a. Recognized by a PDA
- b. Generated by a CFG
- 3. (Turing) Decidable
	- a. Can be decided by a Tm
- 4. (Turing) Recognizable
	- a. Can be recognized by a Tm

Algorithm computation

Church-Turing Thesis

Anything that is computable is computable with a Turing machine because any method of computation using finite time and finite resources will be equally expressive to that of a Turing machine.

Vocabulary check

- 1. Are all decidable languages recognizable?
- 2. If language A is recognizable and language B is decidable, is |A| > |B|
- 3. If M is a Turing machine, what is <M>?

Representations of algorithms

To decide these problems, we need to represent the objects of interest as strings For inputs that aren't strings,

To define TM M:

"On input w ... $\mathbf{1}$. \ddotsc $2.$ 3

Notation:

<0> is the string that represents (encodes) the object O SO_1, \ldots, O_n > is the single string that represents the list of objects O_1 , ..., O_n

we have to **encode the object**

(represent it as a string) first

Turing Decidable Languages

Recap : Turing decidable languages are closed under complementation

Turing Decidable Languages - Recap

- 1. If a language is decidable if and only if it is co-recognizable and recognizable.
- 2. If two languages over a fixed alphabet are turing-decidable, then their union is decidable as well
- 3. If two languages over a fixed alphabet are turing-recognizable, then their union is recognizable as well

Computational Problems

Computational problems

Computational problems for Turing machines

Acceptance problem for Turing machines A_{TM} { $\langle M, w \rangle$ | M is a Turing machine that accepts input string w} Language emptiness testing for Turing machines $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$ Language equality testing for Turing machines $EQ_{TM} = \{(M_1, M_2) | M_1 \text{ and } M_2 \text{ are Turing machines and } L(M_1) = L(M_2)\}\$

What is A_{TM} ?

- A Turing machine whose input is codes of TMs and strings.
- A set of pairs of TMs and strings. \mathbf{B} .
- A set of strings that encode TMs and strings.
- Not well defined.
- I don't know. Е.

A_{TM} is Turing recognizable

- \circ We can define a Turing machine that recognizes A_{TM}
- **•** A_{TM} is **not** Turing decidable
	- Proof by contradiction (diagonalization proof)

Define the TM $N = "On input < M, w>$:

- 1. Simulate M on w.
- 2. If M accepts, accept. If M rejects, reject."

Which of the following statements is true?

- A. N decides A_{TM}
- C. N always halts
- E. I don't know
- $B. N$ recognizes A_{TM}
- D. More than one of the above.

- \bullet A_{TM} is Turing recognizable
	- We can define a Turing machine that recognizes A_{TM}
- **•** A_{TM} is not Turing decidable
	- Proof by contradiction (diagonalization proof)

Proof: Suppose **towards a contradiction** that there is a Turing machine that decides A_{TM} . We call this presumed machine M_{ATM} .

Define a **new** Turing machine using the high-level description:

 $D =$ " On input $\langle M \rangle$, where M is a Turing machine:

1. Run M_{ATM} on $\langle M, \langle M \rangle \rangle$.

2. If M_{ATM} accepts, reject; if M_{ATM} rejects, accept."

What is the result of the computation of D on $\langle D \rangle$?

- A_{TM} is recognizable.
- A_{TM} is not decidable.
- $\overline{A_{TM}}$ is not recognizable.
- \bullet $\overline{A_{TM}}$ is not decidable.

- A_{TM} is recognizable.
- A_{TM} is not decidable.
- A_{TM} is not recognizable.
- A_{TM} is not decidable.
- A language being **decidable** means "we can say **both** yes and no answers about string membership in a language in finite time."
- A language being **recognizable** means "we can say yes about string membership in a language in finite time."
- Anytime we can prove that a set is undecidable yet recognizable, its complement will be **unrecognizable**.

Closure claims

RQ8.5. Closure and nonclosure

Recall the definitions: A language L over an alphabet Σ is called recognizable if there is some Turing machine M such that $L=L(M)$. A language L over an alphabet Σ is called co-recognizable if its complement, defined as $\Sigma^*\setminus L=\{x\in \Sigma^* \mid x\notin L\}$, is Turing-recognizable. A language L over an alphabet Σ is called {\bf unrecognizable} if there is no Turing machine that recognizes it.

Select all and only true statements below.

- The class of unrecognizable languages is closed under complementation.
- The class of recognizable languages is closed under complementation.
- The class of decidable languages is closed under complementation.
- The class of undecidable languages is closed under complementation.

Mapping Reduction

Motivation

- We want to leverage our previous results of language properties
- Thus, we want to relate the "difficulty level" of one problem to another

If problem X is no harder than problem Y ...and if Y is decidable ...then X must also be **decidable**

If problem X is no harder than problem Y ...and if X is **undecidable** ...then Y must also be **undecidable**

"Problem X is no harder than problem Y" means "Can convert questions about membership in X to questions about membership in Y"

Mapping reduction & computable functions

Definition: A is **mapping reducible to** B means there is a computable function $f : \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A$ if and only if $f(x) \in B$.

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Intuition: $A \leq_m B$ means A is no harder than B, i.e. that the level of difficulty of A is less than or equal **"Can convert questions about membership in A to questions about membership in B"**

Computable functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** means there is some Turing machine such that, for each x, on input x the Turing machine halts with exactly $f(x)$ followed by all blanks on the tape

Computable functions example

Computable functions

Definition: A function $f: \Sigma^* \to \Sigma^*$ is a **computable function** means there is some Turing machine such that, for each x, on input x the Turing machine halts with exactly $f(x)$ followed by all blanks on the tape

Define a Turing machine that computes the following function:

The function that maps strings that are not the codes of NFAs to the empty string and that maps strings that code NFAs to the code of a DFA that recognizes the language recognized by the NFA produced by the macro-state construction from Chapter 1.

"No harder than"?

Which of the following statements are true?

- A. $\{0^i1^j \mid i,j \ge 0\}$ is no harder than A_{TM}
- B. A_{TM} is no harder than itself
- C. A_{DFA} is no harder than {ww | w is a string over $\{0,1\}$ }
- D. EQ_{DEA} is no harder than A_{DEA}
- E. All of the above

Mapping reduction practice

RQ8.10. Properties of mapping reductions

Recall that **mapping reduction** is defined in section 5.3: For languages A and B over Σ , we say that the problem A mapping reduces to B means there is a computable function $f:\Sigma^*\to\Sigma^*$ such that for all $x\in\Sigma^*$, $x\in A$ iff $f(x)\in B$. A computable function that makes the iff true is said to witness the mapping reduction from A to B .

Select all and only the true statements below.

- For all languages A and B, if A mapping reduces to B then B mapping reduces to A.
- Every language mapping reduces to its complement.
- Σ^* mapping reduces to every nonempty language over Σ .
- Every decidable language mapping reduces to \emptyset .