Week8&

Week 8 at a glance
Textbook reading: Chapter 4, Section 5.3
Before Monday, “An undecidable language”, Sipser pages 207-2009.

Before Wednesday, Definition 5.20 and figure 5.21 (page 236) of mapping reduction.
Before Friday, Example 5.24 (page 236).

For Week 9 Monday: Example 5.26 (page 237).

We will be learning and practicing to:
e (Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

— Give examples of sets that are regular, context-free, decidable, or recognizable (and prove that
they are).
x Define and explain the definitions of the computational problem Ar,,
x Define and explain the definitions of the computational problem HALT),

e Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

— Use diagonalization to prove that there are 'hard’ languages relative to certain models of com-
putation.

x Trace the argument that proves Ar),; is undecidable and explain why it works.

— Use mapping reduction to deduce the complexity of a language by comparing to the complexity
of another.

x Define computable functions, and use them to give mapping reductions between
computational problems
* Build and analyze mapping reductions between computational problems

x Deduce the decidability or undecidability of a computational problem given map-
ping reductions between it and other computational problems, or explain when
this is not possible.

— Classify the computational complexity of a set of strings by determining whether it is regular,
context-free, decidable, or recognizable.

x State, prove, and use theorems relating decidability, recognizability, and co-
recognizability.

x Prove that a language is decidable or recognizable by defining and analyzing a
Turing machines with appropriate properties.

TODO:

Review Quiz 7 on PrairieLearn (http://us.prairielearn.com), due 2/26,/2025

Homework 5 submitted via Gradescope (https://www.gradescope.com/), due 2/27/2025

Review Quiz 8 on PrairieLearn (http://us.prairielearn.com), due 3/5/2025
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Monday: Ar)s is recognizable but undecidable

Acceptance problem

for Turing machines ~ Ary,  {(M,w) | M is a Turing machine that accepts input string w}
Language emptiness testing

for Turing machines  Ery  {(M) | M is a Turing machine and L(M) = 0}

Language equality testing

for Turing machines EQqy  {(Mi, Ms) | My and M, are Turing machines and L(M;) = L(Ms)}
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Theorem: A7), is Turing-recognizable.

Strategy: To prove this theorem, we need to define a Turing machine R 7y such that L(Rary) = Aras-
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We will show that Aqy; is undecidable. First, let’s explore what that means. <se<n ™ =Ccepr X v
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To prove that a computational problem is decidable, we find/ build a Turing machine that recognizes the
language encoding the computational problem, and that is a decider.

How do we prove a specific problem is not decidable?
How would we even find such a computational problem?

Counting arguments for the existence of an undecidable language:

e The set of all Turing machines is countably infinite.

e Each recognizable language has at least one Turing machine that recognizes it (by definition), so there
can be no more Turing-recognizable languages than there are Turing machines.

e Since there are infinitely many Turing-recognizable languages (think of the singleton sets), there are
countably infinitely many Turing-recognizable languages.

e Such the set of Turing-decidable languages is an infinite subset of the set of Turing-recognizable
languages, the set of Turing-decidable languages is also countably infinite.

Since there are uncountably many languages (because P(X*) is uncountable), there are uncountably many
unrecognizable languages and there are uncountably many undecidable languages.

Thus, there’s at least one undecidable language!

What’s a specific example of a language that is unrecognizable or undecidable?

To prove that a language is undecidable, we need to prove that there is no Turing machine that decides it.
Key idea: proof by contradiction relying on self-referential disagreement.

Theorem: Ar), is not Turing-decidable.

Proof: Suppose t contradiction that there is a Turing machine that decides Ar,;. We call this

presumed machin

By assumption, for every Turing machine M and every string w

o Iffw & L(M), then the computation of Murps on (M, w) O\QCQ/Q)YS
o If u(¢ (M), then the computation of Mary, on (M, w) (“QDE‘Q -

Define a new Turing machine using the high-level description:

D =*“ On input (M), where M is a Turing machine:

1. Run Myrar on (M, (M)).

2. If Marar accepts, reject; if Marys rejects, accept.”
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Summarizing:

e Ap ) is recognizable.

o Ar,s is not decidable.
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Recall definition: A language L over an alphabet X is called co-recognizable if its complement, defined
as X\ L ={x € ¥* | x ¢ L}, is Turing-recognizable.

and Recall Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its
complement are Turing-recognizable.

e Ap) is recognizable.

e Ap)s is not decidable.

e Ar)s is not recognizable.

o Ar,s is not decidable.
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Wednesday: Computable functions and mapping reduction

Mapping reduction

Motivation: Proving that Arjy, is undecidable was hard. How can we leverage that work? Can we relate
the decidability / undecidability of one problem to another?

If problem X is no harder than problem Y ’
...and if Y is easy, Qe A\ e /aﬁ
...then X must be easy too.

Ae aada\o\=

If problem X is no harder than problem Y oV

.and if X is hard, Oode cilslole
..then Y must be hard too.

“Problem X is no harder than problem Y” means “Can answer questions about membership in X by
converting them to questions about membership in Y.

Definition: For any languages A and B, A is mapping reducible to B means there is a computable
function f : ¥* — ¥* such that for all strings x in »*, ——

r€eA if and only if € B.

Notation: when A is mapping reducible to B, we write A <,, B.
Y G \a:s £ wiesses

Intuition: A <,, B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

TODO

\/ 1. What is a computable function?

\/2. How do mapping reductions help establish the computational difficulty of languages?
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Computable functions

Definition: A function f : ¥* — ¥* is a computable function means there is some Turing machine such
that, for each x, on input = the Turing machine halts with exactly f(x) followed by all blanks on the tape

ol W Ooryac _
%W Y ey E

T e e e

FExamples of computable functions:

The function that maps a string to a string which is one character longer and whose value, when interpreted
as a fixed-width binary representation of a nonnegative integer is twice the value of the input string (when
interpreted as a fixed-width binary representation of a non-negative integer)

fi: ¥ =% fi(z) = 20

To prove f; is computable function, we define a Turing machine computing it.

High-level description

“On input w ® ARy - D‘\ \(\?\,}: W )
1. Append 0 to w. ‘\' \?e‘\é‘ D ) A O\\XV?’ & WO
2. Halt.” 2. AN N Cesn\t

Implementation-level description

“On input w

1. Sweep read-write head to the right until find first blank cell.
2. Write 0.

3. Halt.”

Formal definition ({q0, qacc, qrej}, {0,1},{0,1, .}, 6, 0, qacc, grej) where § is specified by the state diagram:
O)‘ —)Q
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The function that maps a string to the result of repeating the string twice.

fo: X =¥ fo(z) = zx

N O« ‘\{\‘Q\k\ X

A. om\ AL

The function that maps strings that are not the codes of NFAs to the empty string and that maps strings
that code NFAs to the code of a DFA that recognizes the language recognized by the NFA produced by the
macro-state construction from Chapter 1.

The function that maps strings that are not the codes of Turing machines to the empty string and that
maps strings that code Turing machines to the code of the related Turing machine that acts like the Turing
machine coded by the input, except that if this Turing machine coded by the input tries to reject, the new
machine will go into a loop.

. . € if x is not the code of a TM
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Definition: A is mapping reducible to B, A <,, Bm means there is a computable function f : ¥X* — »*
such that for all strings = in 3%,

reA if and only if f(x) € B.
In this case, we say the function f witnesses that A is mapping reducible to B.

Making intutition precise . . .

Theorem (Sipser 5.22): If A <, B and B is decidable, then A is decidab A is decidable. \
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Theorem (Sipser 5.23): If A <,, B and A is undecidable, then B is undemdable\ /
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Friday: The Halting problem

Recall definition: A is mapping reducible to B means there is a computable function f : ¥* — ¥* such
that for all strings z in 3%,

r €A if and only if f(z) € B.
Notation: when A is mapping reducible to B, we write A <,,, B.

Intuition: A <,, B means A is no harder than B, i.e. that the level of difficulty of A is less than or equal
the level of difficulty of B.

Example: Ary <in Arum Aryr = {{M,w) | M is a TM and w is a string and w € L(M)}

To prove, need a witnessing function f ;. ¥* — X* that is (1) computable and (2) for each v € ¥*, x € Ay
iff f(x) € Arar
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Corollary: For any language L, L <,, L, as witnessed by Aa~e -\Ae;é’nxs Forcn
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To prove, nee ] ng function f: 3% — X* that is (1) computable and (2) for each x € E*,xe@
iff f(z) € fww | we{0,1}*
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Next: consider mapping reductions between potentially undecidable languages.
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Halting problem

HALTry = {(M,w) | M is a Turing machine, w is a string, and M halts on w}

We know A, is undecidable? If we could prove that Ary <,, HALTry then we could conclude that

HALTr,, is undecidable too.
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Could we adapt our approach from before by tweaking the identity map?
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Define F': ¥* — ¥* by

F(z) constyy if © # (M, w) for any Turing machine M and string w over the alphabet of M
xTr) =
@w) if x = (M, w) for some Turing machine M and string w over the alphabet of M.
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start —>
where consty, = ( ,E) and@s a Turing machine that computes like M

except, if the computation of M ever were to go to a reject state, M, loops instead.

. = Ay
To use this function to prove that Apyy <,, HALTry, we need two claims-

Claim (1): F' is computable

e Qé%e,o‘.

Claim (2): for every z, x € Apyy iff F(x) € HALTry,.
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