Week 7 Wednesday Review Quiz

Q1 Closure 2 Points

In class, we saw that (1) if two languages (over a fixed alphabet Σ) are Turing-decidable, then their union is as well and (2) if two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Q1.1 1 Point

Is the same true for intersection?

- Yes, the class of Turing-recognizable languages is closed under intersection and the class of Turing-decidable languages is closed under intersection.
- No, the class of Turing-recognizable languages is closed under intersection but the class of Turing-decidable languages is not closed under intersection.
- No, the class of Turing-recognizable languages is not closed under intersection even though the class of Turing-decidable languages is closed under intersection.
- No, the class of Turing-recognizable languages is not closed under intersection and also the class of Turing-decidable languages is not closed under intersection.

Is	the	same	true	for	set-wise	concatenation?

Yes, the class of Turing-recognizable languages is closed under set-wise concatenation and the class of Turing-decidable languages is closed under set-wise concatenation.
No, the class of Turing recognizable languages is closed under set
wise concatenation but the class of Turing-decidable languages is not closed under set-wise concatenation.
No, the class of Turing-recognizable languages is not closed under set-wise concatenation even though the class of Turing-decidable languages is closed under set-wise concatenation.
No, the class of Turing-recognizable languages is not closed under set-wise concatenation and also the class of Turing-decidable languages is not closed under set-wise concatenation.

Save Answer

Q2 New Turing machines from old 4 Points

Consider the construction of a new Turing machine M from Turing machines M_1 and M_2 .

 $M = `` \mathrm{On \; input} \; w$

- 1. Run M_1 on w
- 2. If it accepts, accept.
- 3. If it rejects, go to step 4.
- 4. Run M_2 on w
- 5. If it accepts, accept.
- 6. If it rejects, reject."

Consider the following possible counterexamples to this construction witnessing the closure of the class of recognizable languages under intersection.

Q2.1 2 Points

Example Turing machines M_1, M_2 and string w with M_1 rejecting w and M_2 accepting w.

Not a counterexample

Counterexample

Q2.2 2 Points

Example Turing machines M_1, M_2 and string w with M_1 looping on w and M_2 accepting w.

Not a counterexample

Counterexample

Q3 Construction

2 Points

Let M_1 and M_2 be Turing machines. Consider the following new Turing machine.

M = "On input x

1. For $i=0,1,2\ldots$

- 2. If $x = 0^i$, accept.
- 3. Run M_1 on x for (at most) i steps
- 3a. If it accepts, accept.

3b. If it rejects or doesn't halt within the i steps, go to step 4.

4. Run M_2 on x for (at most) i steps

4a. If it accepts, accept.

4b. If it rejects or doesn't halt within the i steps, increment i and go back to step 2."

What is L(M)?

 $egin{aligned} & L(M_1) \cup L(M_2) \ & L(0^*) \cup L(M_1) \cup L(M_2) \ & L(0^*) \circ L(M_1) \cup L(0^*) \circ L(M_2) \end{aligned}$

None of the above

Q4 Languages and Turing machines 2 Points

Which of the following are languages? (Select all that apply)

Save Answer

Q5 Feedback 0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Save Answer

Save All Answers

Submit & View Submission >

Week 7 Friday Review Quiz

Q1 Type checking 2 Points

Consider the Turing machine described by the high-level description:

M = "On input $\langle D \rangle$, where D is a DFA over $\{0,1\}$,

1. If the number of states in D is less than 4, accept"

Q1.1 1 Point

Suppose x is a string that is *not* the encoding of any DFA D over $\{0, 1\}$. What does the computation of M on x do?

Stop the computation with an error

Loop (never halt) the computation

Halt and reject

Halt and acccept

Save Answer

Q1.2 1 Point

What is L(M)?

There's no such thing as ${\cal L}(M)$ because M has inputs that are DFAs rather than strings.

$$\begin{split} &\{\langle D\rangle \mid D \text{ is a DFA over } \{0,1\} \text{ and } |L(D)| < 4 \} \\ &\{\langle D\rangle \mid D = (Q,\{0,1\},\delta,q_0,F) \text{ is a DFA } \text{ and } |Q| < 4 \} \\ &\{\langle D\rangle \mid D = (Q,\{0,1\},\delta,q_0,F) \text{ is a DFA } \text{ and } |F| < 4 \} \end{split}$$

None of the above

Q2 More type checking

1 Point

Consider the Turing machine X, defined as follows:

"On input $\langle M,w
angle$ where M is a Turing machine and w is a string:" (where the ... are filled in with the steps of the algorithm).

What happens if we run X on input string x, where x is not of the form $\langle M,w \rangle$ for any Turing machine M or string w?

The computation of X on x gets stuck and does not proceed to step 1.

The computation of X on x implicitly type checks x and rejects.

The computation of X on x defaults to accept the string when it's not of the declared type.

The computation of X on x runs all possible computations of X on input $\langle M,w
angle$ for any TM M.

It depends on whether the Turing machine M halts/loops on w, where $x = \log M, w$

Q3 Computational problems

3 Points

Consider the following three DFA over the alphabet $\{0,1\}$, whose state diagrams are below.

A1

A2

A3

Select all and only true statements below.

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\Box \ \langle A1 \rangle \in E_{DFA}$
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Q4 Acceptance problems

2 Points

Select all and only the acceptance problems below that are decidable.

 \Box The acceptance problem for DFA, A_{DFA}

 $\Box\,$ The acceptance problem for NFA, A_{NFA}

The acceptance problem for regular expressions, A_{REX}

The acceptance problem for PDA, A_{PDA}

igcdown The acceptance problem for CFG, A_{CFG}

Q5 Emptiness problems 2 Points

Select all and only the emptiness problems below that are decidable.

	The	emptiness	problem	for	DFA,	E_{DFA}
--	-----	-----------	---------	-----	------	-----------

The emptiness problem for NFA, E_{NFA}

The emptiness problem for regular expressions, E_{REX}

Q6 Feedback 0 Points

Any feedback about today's material or comments you'd like to share? (Optional; not for credit)

