Week 7 Wednesday Review Quiz

Q1 Closure

2 Points
In class, we saw that (1) if two languages (over a fixed alphabet Σ) are Turing-decidable, then their union is as well and (2) if two languages (over a fixed alphabet Σ) are Turing-recognizable, then their union is as well.

Q1.1

1 Point
Is the same true for intersection?Yes, the class of Turing-recognizable languages is closed under intersection and the class of Turing-decidable languages is closed under intersection.

No, the class of Turing-recognizable languages is closed under intersection but the class of Turing-decidable languages is not closed under intersection.
\square No, the class of Turing-recognizable languages is not closed under intersection even though the class of Turing-decidable languages is closed under intersection.
\square No, the class of Turing-recognizable languages is not closed under intersection and also the class of Turing-decidable languages is not closed under intersection.

[^0]Q1.2
1 Point

Is the same true for set-wise concatenation?
Yes, the class of Turing-recognizable languages is closed under set-wise concatenation and the class of Turing-decidable languages is closed under set-wise concatenation.
\square No, the class of Turing-recognizable languages is closed under setwise concatenation but the class of Turing-decidable languages is not closed under set-wise concatenation.

No, the class of Turing-recognizable languages is not closed under set-wise concatenation even though the class of Turing-decidable languages is closed under set-wise concatenation.

No, the class of Turing-recognizable languages is not closed under set-wise concatenation and also the class of Turing-decidable languages is not closed under set-wise concatenation.

Save Answer

Q2 New Turing machines from old 4 Points

Consider the construction of a new Turing machine M from Turing machines M_{1} and M_{2}.
$M={ }^{6} \mathrm{On}$ input w

1. Run M_{1} on w
2. If it accepts, accept.
3. If it rejects, go to step 4.
4. Run M_{2} on w
5. If it accepts, accept.
6. If it rejects, reject."

Consider the following possible counterexamples to this construction witnessing the closure of the class of recognizable languages under intersection.

Q2. 1
2 Points
Example Turing machines M_{1}, M_{2} and string w with M_{1} rejecting w and M_{2} accepting w.

Not a counterexample Counterexample

```
Save Answer
```

Q2.2
2 Points
Example Turing machines M_{1}, M_{2} and string w with M_{1} looping on w and M_{2} accepting w.

Not a counterexample
Counterexample

```
Save Answer
```


Q3 Construction

2 Points
Let M_{1} and M_{2} be Turing machines. Consider the following new Turing machine.
$M=$ "On input x

1. For $i=0,1,2 \ldots$
2. If $x=0^{i}$, accept.
3. \quad Run M_{1} on x for (at most) i steps

3a. If it accepts, accept.
3b. If it rejects or doesn't halt within the i steps, go to step 4.
4. Run M_{2} on x for (at most) i steps

4a. If it accepts, accept.
4b. If it rejects or doesn't halt within the i steps, increment i and go back to step 2."

What is $L(M)$?
$L\left(M_{1}\right) \cup L\left(M_{2}\right)$
$L\left(0^{*}\right) \cup L\left(M_{1}\right) \cup L\left(M_{2}\right)$
$L\left(0^{*}\right) \circ L\left(M_{1}\right) \cup L\left(0^{*}\right) \circ L\left(M_{2}\right)$
None of the above

Save Answer

Q4 Languages and Turing machines

2 Points

Which of the following are languages? (Select all that apply)
$\square\{L \mid L$ is a language and L is decidable $\}$$\{M \mid M$ is a Turing machine and $L(M)$ is infinite $\}$$\{\langle M\rangle \mid M$ is a Turing machine and $L(M)$ is finite $\}$$\{\langle M, w\rangle \mid M$ is a Turing machine and w is a string and w is in $L(M)\}$$\left\{w \mid w\right.$ is accepted by $\left.M_{0}\right\}$ (Assume that M_{0} is some fixed Turing machine)

Save Answer

Q5 Feedback
0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)
\square

[^1]
Week 7 Friday Review Quiz

Q1 Type checking

2 Points
Consider the Turing machine described by the high-level description:
$M=$ "On input $\langle D\rangle$, where D is a DFA over $\{0,1\}$,

1. If the number of states in D is less than 4 , accept"

Q1.1
1 Point
Suppose x is a string that is not the encoding of any DFA D over $\{0,1\}$. What does the computation of M on x do?

Stop the computation with an error
Loop (never halt) the computation
Halt and reject
Halt and acccept

Save Answer

Q1.2

1 Point
What is $L(M)$?
There's no such thing as $L(M)$ because M has inputs that are DFAs rather than strings.
$\{\langle D\rangle \mid D$ is a DFA over $\{0,1\}$ and $|L(D)|<4\}$
$\left\{\langle D\rangle \mid D=\left(Q,\{0,1\}, \delta, q_{0}, F\right)\right.$ is a DFA and $\left.|Q|<4\right\}$
$\left\{\langle D\rangle \mid D=\left(Q,\{0,1\}, \delta, q_{0}, F\right)\right.$ is a DFA and $\left.|F|<4\right\}$
None of the above

Q2 More type checking 1 Point

Consider the Turing machine X, defined as follows:
"On input $\langle M, w\rangle$ where M is a Turing machine and w is a string:"
(where the ... are filled in with the steps of the algorithm).

What happens if we run X on input string x, where x is not of the form $\langle M, w\rangle$ for any Turing machine M or string w ?

The computation of X on x gets stuck and does not proceed to step 1.
The computation of X on x implicitly type checks x and rejects.
The computation of X on x defaults to accept the string when it's not of the declared type.
The computation of X on x runs all possible computations of X on input $\langle M, w\rangle$ for any TM M.

It depends on whether the Turing machine M halts/loops on w, where $\$ \mathrm{x}=$ \langle M,w \rangle\$\$.

[^2]
Q3 Computational problems

3 Points
Consider the following three DFA over the alphabet $\{0,1\}$, whose state diagrams are below.

A1

A2

Select all and only true statements below.
$\square\langle A 1\rangle \in A_{D F A}$
$\square\langle A 1\rangle \in E_{D F A}$
$\square\langle A 1\rangle \in E Q_{D F A}$
$\square\langle A 2,0\rangle \in A_{D F A}$
$\square\langle A 2,00\rangle \in E_{D F A}$
$\square\langle A 2,00\rangle \in E Q_{D F A}$
$\square\langle A 3, A 1\rangle \in A_{D F A}$
$\square\langle A 3, A 2\rangle \in E_{D F A}$
$\square\langle A 3, A 3\rangle \in E Q_{D F A}$

Q4 Acceptance problems

2 Points
Select all and only the acceptance problems below that are decidable.
The acceptance problem for DFA, $A_{D F A}$

The acceptance problem for NFA, $A_{N F A}$

The acceptance problem for regular expressions, $A_{R E X}$

The acceptance problem for PDA, $A_{P D A}$

The acceptance problem for CFG, $A_{C F G}$

Save Answer

Q5 Emptiness problems
 2 Points

Select all and only the emptiness problems below that are decidable.
The emptiness problem for DFA, $E_{D F A}$

The emptiness problem for NFA, $E_{N F A}$

The emptiness problem for regular expressions, $E_{R E X}$

Save Answer

Q6 Feedback

0 Points
Any feedback about today's material or comments you'd like to share? (Optional; not for credit)
\square

[^0]: Save Answer

[^1]: Save Answer

[^2]: Save Answer

