
Week7

Week 7 at a glance

Textbook reading: Chapter 4
No class on Monday in observance of UCSD holiday.

Before Wednesday, Introduction to Chapter 4.

Before Friday, Decidable problems concerning regular languages, Sipser pages 194-196.

For Week 8 Monday: An undecidable language, Sipser pages 207-209.

We will be learning and practicing to:
• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Use clear English to describe computations of Turing machines informally.

∗ Use high-level descriptions to define and trace Turing machines

∗ Apply dovetailing in high-level definitions of machines

– Give examples of sets that are regular, context-free, decidable, or recognizable (and prove that
they are).

∗ Give examples of sets that are decidable.

∗ Give examples of sets that are recognizable.

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

– Translate a decision problem to a set of strings coding the problem.

∗ Connect languages and computational problems

∗ Describe and use the encoding of objects as inputs to Turing machines

∗ Trace high-level descriptions of algorithms for computational problems

– Classify the computational complexity of a set of strings by determining whether it is regular,
context-free, decidable, or recognizable.

∗ Describe common computational problems with respect to DFA, NFA, regular
expressions, PDA, and context-free grammars.

∗ Give high-level descriptions of Turing machines that decide common compu-
tational problems with respect to DFA, NFA, regular expressions, PDA, and
context-free grammars.

TODO:

Review Quiz 6 on PrairieLearn (http://us.prairielearn.com), due 2/19/2025

Homework 4 submitted via Gradescope (https://www.gradescope.com/), due 2/20/2025

Review Quiz 7 on PrairieLearn (http://us.prairielearn.com), due 2/26/2025

CC BY-NC-SA 2.0 Version February 12, 2025 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: No class, in observance of UCSD holiday

Wednesday: General constructions for Turing machines

Definition: A language L over an alphabet ⌃ is called co-recognizable if its complement, defined as
⌃⇤ \ L = {x 2 ⌃⇤ | x /2 L}, is Turing-recognizable.

Notation: The complement of a set X is denoted with a superscript c, Xc, or an overline, X.

Theorem (Sipser Theorem 4.22): A language is Turing-decidable if and only if both it and its complement
are Turing-recognizable.

Proof, first direction: Suppose language L is Turing-decidable. WTS that both it and its complement
are Turing-recognizable.

Proof, second direction: Suppose language L is Turing-recognizable, and so is its complement. WTS
that L is Turing-decidable.

CC BY-NC-SA 2.0 Version February 12, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Dovetailing: interleaving progress on multiple computations by limiting the number of steps each compu-
tation makes in each round.

CC BY-NC-SA 2.0 Version February 12, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet ⌃) are Turing-decidable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version February 12, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Claim: If two languages (over a fixed alphabet ⌃) are Turing-recognizable, then their union is as well.

Proof:

CC BY-NC-SA 2.0 Version February 12, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Decidable problems about regular languages

The Church-Turing thesis posits that each algorithm can be implemented by some Turing
machine.

Describing algorithms (Sipser p. 185) To define a Turing machine, we could give a

• Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet,
transition function, start state, accept state, and reject state. This is the low-level programming view
that models the logic computation flow in a processor.

• Implementation-level definition: English prose that describes the Turing machine head move-
ments relative to contents of tape, and conditions for accepting / rejecting based on those contents.
This level describes memory management and implementing data access with data structures.

– Mention the tape or its contents (e.g. “Scan the tape from left to right until a blank is seen.”)

– Mention the tape head (e.g. “Return the tape head to the left end of the tape.”)

• High-level description of algorithm executed by Turing machine: description of algorithm (precise
sequence of instructions), without implementation details of machine. High-level descriptions of Turing
machine algorithms are written as indented text within quotation marks. Stages of the algorithm are
typically numbered consecutively. The first line specifies the input to the machine, which must be a
string.

– Use other Turing machines as subroutines (e.g. “Run M on w”)

– Build new machines from existing machines using previously shown results (e.g. “Given NFA A

construct an NFA B such that L(B) = L(A)”)

– Use previously shown conversions and constructions (e.g. “Convert regular expression R to an
NFA N”)

Formatted inputs to Turing machine algorithms

The input to a Turing machine is always a string. The format of the input to a Turing machine can be
checked to interpret this string as representing structured data (like a csv file, the formal definition of a
DFA, another Turing machine, etc.)

This string may be the encoding of some object or list of objects.

Notation: hOi is the string that encodes the object O. hO1, . . . , Oni is the string that encodes the list of
objects O1, . . . , On.

Assumption: There are algorithms (Turing machines) that can be called as subroutines to decode the string
representations of common objects and interact with these objects as intended (data structures). These
algorithms are able to “type-check” and string representations for di↵erent data structures are unique.

CC BY-NC-SA 2.0 Version February 12, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For example, since there are algorithms to answer each of the following questions, by Church-Turing thesis,
there is a Turing machine that accepts exactly those strings for which the answer to the question is “yes”

• Does a string over {0, 1} have even length?

• Does a string over {0, 1} encode a string of ASCII characters?1

• Does a DFA have a specific number of states?

• Do two NFAs have any state names in common?

• Do two CFGs have the same start variable?

A computational problem is decidable i↵ language encoding its positive problem instances is decidable.

The computational problem “Does a specific DFA accept a given string?” is encoded by the language

{representations of DFAs M and strings w such that w 2 L(M)}
={hM,wi | M is a DFA, w is a string, w 2 L(M)}

The computational problem “Is the language generated by a CFG empty?” is encoded by the language

{representations of CFGs G such that L(G) = ;}
={hGi | G is a CFG, L(G) = ;}

The computational problem “Is the given Turing machine a decider?” is encoded by the language

{representations of TMs M such that M halts on every input}
={hMi | M is a TM and for each string w,M halts on w}

Note: writing down the language encoding a computational problem is only the first step in determining if
it’s recognizable, decidable, or . . .

Deciding a computational problem means building / defining a Turing machine that recognizes the language
encoding the computational problem, and that is a decider.

Some classes of computational problems will help us understand the di↵erences between the machine models
we’ve been studying. (Sipser Section 4.1)

1An introduction to ASCII is available on the w3 tutorial here.

CC BY-NC-SA 2.0 Version February 12, 2025 (7)

https://www.w3schools.com/charsets/ref_html_ascii.asp
https://creativecommons.org/licenses/by-nc-sa/2.0/

Acceptance problem

. . . for DFA ADFA {hB,wi | B is a DFA that accepts input string w}

. . . for NFA ANFA {hB,wi | B is a NFA that accepts input string w}

. . . for regular expressions AREX {hR,wi | R is a regular expression that generates input string w}

. . . for CFG ACFG {hG,wi | G is a context-free grammar that generates input string w}

. . . for PDA APDA {hB,wi | B is a PDA that accepts input string w}

Language emptiness testing

. . . for DFA EDFA {hAi | A is a DFA and L(A) = ;}

. . . for NFA ENFA {hAi | A is a NFA and L(A) = ;}

. . . for regular expressions EREX {hRi | R is a regular expression and L(R) = ;}

. . . for CFG ECFG {hGi | G is a context-free grammar and L(G) = ;}

. . . for PDA EPDA {hAi | A is a PDA and L(A) = ;}

Language equality testing

. . . for DFA EQDFA {hA,Bi | A and B are DFAs and L(A) = L(B)}

. . . for NFA EQNFA {hA,Bi | A and B are NFAs and L(A) = L(B)}

. . . for regular expressions EQREX {hR,R
0i | R and R

0 are regular expressions and L(R) = L(R0)}
. . . for CFG EQCFG {hG,G

0i | G and G
0 are CFGs and L(G) = L(G0)}

. . . for PDA EQPDA {hA,Bi | A and B are PDAs and L(A) = L(B)}

Example strings in ADFA

Example strings in EDFA

Example strings in EQDFA

M1 = “On input hM,wi, where M is a DFA and w is a string:

0. Type check encoding to check input is correct type. If not, reject.

1. Simulate M on input w (by keeping track of states in M , transition function of M , etc.)

2. If the simulation ends in an accept state of M , accept. If it ends in a non-accept state of
M , reject. ”

What is L(M1)?

Is M1 a decider?

Alternate description: Sometimes omit step 0 from listing and do implicit type check.

Synonyms: “Simulate”, “run”, “call”.

CC BY-NC-SA 2.0 Version February 12, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

True / False: AREX = ANFA = ADFA

True / False: AREX \ ANFA = ;, AREX \ ADFA = ;, ADFA \ ANFA = ;

EDFA = {hAi | A is a DFA and L(A) = ;}. A Turing machine that decides EDFA is

M2 =“On input hMi where M is a DFA,

1. For integer i = 1, 2, . . .

2. Let si be the ith string over the
alphabet of M (ordered in string or-
der).

3. Run M on input si.

4. If M accepts, reject. If M re-
jects, increment i and keep going.”

M3 = “ On input hMi whereM is a DFA,

1. Mark the start state of M .

2. Repeat until no new states get
marked:

3. Loop over the states of M .

4. Mark any unmarked state that
has an incoming edge from a marked
state.

5. If no accept state of M is marked,
; otherwise, ”.

CC BY-NC-SA 2.0 Version February 12, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

To build a Turing machine that decides EQDFA, notice that

L1 = L2 i↵ ((L1 \ L2) [(L2 \ L1)) = ;

There are no elements that are in one set and not the other

MEQDFA =

Summary: We can use the decision procedures (Turing machines) of decidable problems as subroutines
in other algorithms. For example, we have subroutines for deciding each of ADFA, EDFA, EQDFA. We
can also use algorithms for known constructions as subroutines in other algorithms. For example, we have
subroutines for: counting the number of states in a state diagram, counting the number of characters in
an alphabet, converting DFA to a DFA recognizing the complement of the original language or a DFA
recognizing the Kleene star of the original language, constructing a DFA or NFA from two DFA or NFA
so that we have a machine recognizing the language of the union (or intersection, concatenation) of the
languages of the original machines; converting regular expressions to equivalent DFA; converting DFA to
equivalent regular expressions, etc.

CC BY-NC-SA 2.0 Version February 12, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

