Closure Claim Review, Turing Machines

CSE 105 Week 6 Discussion

Deadlines and Logistics

- Congratulations on completing Test 1
- Do review quizzes on PrairieLearn
- HW 4 due 11/12/24 at 5pm

Closure claims for regular and context-free languages

Closure claim summary

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
True	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
True	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

Week 5 notes, Pg 7

• DFA flip accept/reject status of the states

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
Tone	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
TENE	The class of context-free languages over Σ is closed under Kleene star.

- DFA "parallel computation"
- NFA construction

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
tone	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

Sipser Figure 1.46, Pg 59

• DFA "parallel computation"

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
Tone	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

• NFA construction

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
Toue	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

Sipser Figure 1.48, Pg 61

• NFA construction

FIGURE 1.50 Construction of N to recognize A^*

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
True	The class of regular languages over Σ is closed under concatenation.
Tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
True	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

- CFG $S \rightarrow S_1 \mid S_2$
- PDA construction

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
Tone	The class of regular languages over Σ is closed under concatenation.
Tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
True	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

Week 5 notes, Pg 4

- CFG $S \rightarrow S_1 S_2$
- PDA construction, similar to the NFA idea but need "stack clean-up" (HW4)

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
Tone	The class of regular languages over Σ is closed under concatenation.
Tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FAUSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

Week 5 notes, Pg 5

- CFG
- $G_{I}=\left(V_{I}, \mathcal{Z}, \mathcal{R}_{I}, \mathcal{S}_{I}\right)$

 $s \notin V_{1}$ $G = (V_{1} \cup \xi \leq Y_{1}, \Sigma, R, S)$ $R: R_{1} \cup \{S \rightarrow SS_{1} \mid \xi\}$

True	The class of regular languages over Σ is closed under complementation.
True	The class of regular languages over Σ is closed under union.
True	The class of regular languages over Σ is closed under intersection.
true	The class of regular languages over Σ is closed under concatenation.
tive	The class of regular languages over Σ is closed under Kleene star.
FALSE	The class of context-free languages over Σ is closed under complementation.
true	The class of context-free languages over Σ is closed under union.
FALSE	The class of context-free languages over Σ is closed under intersection.
True	The class of context-free languages over Σ is closed under concatenation.
True	The class of context-free languages over Σ is closed under Kleene star.

FAUSE The class of context-free languages over Σ is closed under intersection.

Idea (informal):

• Counterexample:

Over the alphabet $\{a, b, c\}$, we have languages

 $A = \{a^n b^n c^m \mid m, n \ge 0\}$ $B = \{a^m b^n c^n \mid m, n \ge 0\}$

Both A and B are context-free languages. However,

$$A \cap B = \{a^n b^n c^n \mid n \ge 0\}$$

is not context-free (which can be proved by using the pumping lemma for context-free languages)

• De Morgan's Law & proof by contradiction:

Assume context-free languages are closed under complementation. Consider context-free languages A and \overline{B} . Then \overline{A} and \overline{B} should also be context-free. Since context-free languages are closed under union, we further get $\overline{A} \cup \overline{B}$ should also be context-free. Then $\overline{\overline{A} \cup \overline{B}}$ should also be context-free. Then $\overline{\overline{A} \cup \overline{B}}$ should also be context-free. By De Morgan's Law,

$$A\cap B=\overline{\overline{A}\cup\overline{B}}$$

, thus we conclude that $A \cap B$ is context-free. However, we proved that context-free languages are not closed under intersection, so here we arrive at a contradiction. Therefore context-free languages are not closed under complementation.

Turing Machines

Turing machines

- Uses an infinite tape as its **unlimited memory**
- Has a tape head that can **read** and **write** symbols and **move around** on tape
- A Turing machine may loop on some input

Sipser Definition 3.3, Pg 168

Conventions

- State diagram edge labels meaning and abbreviations
 - \circ b \rightarrow X, R means "read b from tape, write X onto tape, and move tape head Right"
 - \circ you can either use ; or \rightarrow in edge labels
 - $\circ \quad b \to R \text{ means } b \to b, R$
 - \circ a, b, c → L means a → a, L and b → b, L and c → c, L
- You can either use ⊔ or □ for blank symbol
- The reject state **qrej** might not appear in the state diagram, and any missing transitions in the state diagram have value (**qrej**, □, **R**).
- If the tape head is already at the leftmost position on the tape, and a transition says to move Left, we do the transition and stay at the leftmost position

Conventions

Week 5 notes, Pg 10

Turing machine computation

Now we give the formal description of $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}}\},\$
- $\Sigma = \{0\}$, and
- $\Gamma = \{0,x,\sqcup\}.$
- We describe δ with a state diagram (see Figure 3.8).
- The start, accept, and reject states are q_1 , q_{accept} , and q_{reject} , respectively.

FIGURE 3.8 State diagram for Turing machine M_2

Turing machine computation

Sipser Pg 171-172

Describing Turing Machines

Describing Turing machines (Sipser p. 185) To define a Turing machine, we could give a

- Formal definition: the 7-tuple of parameters including set of states, input alphabet, tape alphabet, transition function, start state, accept state, and reject state; or,
- Implementation-level definition: English prose that describes the Turing machine head movements relative to contents of tape, and conditions for accepting / rejecting based on those contents.
- High-level description: description of algorithm (precise sequence of instructions), without implementation details of machine. As part of this description, can "call" and run another TM as a subroutine.

Implementation-level description

Here we describe a Turing machine (TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$, the language consisting of all strings of 0s whose length is a power of 2.

 $M_2 =$ "On input string w:

- **1.** Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, *accept*.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- 4. Return the head to the left-hand end of the tape.
- 5. Go to stage 1."

High-level description

RQ6.7. Turing machines: subroutines and deciders

Suppose M_1 and M_2 are Turing machines. Consider the Turing machines given by the high-level descriptions:

M = "On input w,

1. Run M_1 on input w. If M_1 accepts w, accept. If M_1 rejects w, go to 2. 2. Run M_2 on input w. If M_2 accepts w, accept. If M_2 rejects w, reject."

M' = "On input w,

1. Run M_1 on input w. If M_1 rejects w, reject. If M_1 accepts w, go to 2. 2. Run M_2 on input w. If M_2 rejects w, reject. If M_2 accepts w, accept."

For each of the following claims, answer **Always true** if the statement is true for all possible M_1 and M_2 ; answer **Always false** if the statement is false for all possible M_1 and M_2 ; and answer Neither otherwise.

If M_1 and M_2 are both deciders then M is a decider. V If $w \in L(M_1)$ then $w \in L(M)$. V If $w \in L(M_2)$ then $w \in L(M)$. V If $w \notin L(M_1)$ then $w \notin L(M)$. V If $w \notin L(M_2)$ then $w \notin L(M)$. V If M_1 and M_2 are both deciders then M' is a decider. V If $w \in L(M_1)$ then $w \in L(M')$. V If $w \in L(M_2)$ then $w \in L(M')$. $\mathbf{\vee}$ If $w \notin L(M_1)$ then $w \notin L(M')$. V If $w \notin L(M_2)$ then $w \notin L(M')$. V

Turing-recognizable and Turing-decidable

- **Deciders** are Turing machines that halt on all inputs; they never loop; they always make a decision to accept or reject
- Call a language **Turing-recognizable** if some Turing machine recognizes it
- Call a language Turing-decidable if some decider decides it

