0/7 Questions Answered

Week 5 Monday Review Quiz
 Q1 CFG definition

2 Points
Consider the CFG defined as $(\{A, B\},\{0,1\}, R, A)$ with rules $A \rightarrow$ $0 A 0|0 A 1| 1 A 0|1 A 1| 1$.

Q1.1 (a)
1 Point
Select all and only the examples below that are a variable for this CFG?
\square A
\square
\square ε

Save Answer

Q1.2 (b)
1 Point
Select all and only the examples below that are a terminal for this CFG?

A

0\square ε

Q2 CFG derivations
3 Points
Consider the CFG defined as $(\{A, B\},\{0,1\}, R, A)$ with rules $A \rightarrow$ $0 A 0|0 A 1| 1 A 0|1 A 1| 1$.

Q2.1 (a)
1 Point
Select all and only the examples below that might appear in the start of a derivation of this grammar as a one step application of a production rule.
$A \Longrightarrow A$$A \Longrightarrow 0$$A \Longrightarrow 0 A 0$$A \Longrightarrow 0 A 1$

Q2.2 (b)
2 Points
Select all and only the examples below that are in the language generated by this context free grammar.

ε

01

A

111

10101
Save Answer

Q3 Designing a CFG

2 Points
Is there a CFG G with $L(G)=\emptyset$?No, because every grammar has at least one variable.No, because every alphabet (and hence the set of terminals) is nonempty.No, because \emptyset is a regular language.Yes, for example the grammar $(\{S\},\{0,1\}\{S \rightarrow S\}, S)$

Q4 Analyzing a CFG

Consider the alphabet $\{a, b\}$. Select all and only the grammars below that generate the language $\{a b b a\}$

$$
\square(\{S, T, V, W\},\{a, b\},\{S \rightarrow a T, T \rightarrow b V, V \rightarrow b W, W \rightarrow a\}, S)
$$

$$
\square(\{Q\},\{a, b\},\{Q \rightarrow a b b a\}, Q)
$$

$$
\square(\{X, Y\},\{a, b\},\{X \rightarrow a Y a, Y \rightarrow b b\}, X)
$$

None of the above

Save Answer

Q5 Feedback

0 Points

Any feedback about today's material or comments you'd like to share? (Optional; not for credit)
\square

Week 5 Wednesday Review Quiz

Q1 CFL example

2 Points
Consider the language $\left\{a^{i} b^{j} \mid j \geq i \geq 0\right\}$ over the alphabet $\{a, b\}$.

Q1.1 CFG

1 Point

Which is true?There is exactly one CFG that generates this language.There are many different CFGs that each generate this language.There are no CFGs that generate this language.None of the above.

Save Answer

Q1.2 PDA

1 Point

Which is true? (select all and only correct choices)
There is a PDA that recognizes this language.There is a NFA that recognizes this language.There is a DFA that recognizes this language.None of the above.

Q2 Closure for CFL 6 Points

Q2.1 Union: strategy
 2 Points

To prove that the set of all context-free languages is closed under the union operation ... (select all and only the correct ways to finish this sentence)
we define a general procedure which takes two context-free grammars and produces a new grammar that generates the union of the languages of the input CFGs.
we define a general procedure which takes two PDA and produces a new PDA that recognizes the union of the languages of the input PDAs.

None of the above.

Save Answer

Q2.2 Union: construction for CFGs
 1 Point

Given $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ that are CFGs with $L\left(G_{1}\right)=L_{1}$ and $L\left(G_{2}\right)=L_{2}$ and $V_{1} \cap V_{2}=\emptyset$ and $S_{\text {new }} \notin V_{1} \cup V_{2}$. Which of the following sets of rules complete the CFG $G=\left(V_{1} \cup V_{2} \cup\left\{S_{\text {new }}\right\}, \Sigma, R, S_{\text {new }}\right)$ so that $L(G)=L\left(G_{1}\right) \cup L\left(G_{2}\right)$?
$\bigcirc R_{1} \cup R_{2}$
$\bigcirc R_{1} \cup R_{2} \cup\left\{S_{\text {new }} \rightarrow S_{1} \mid S_{2}\right\}$
$\bigcirc R_{1} \times R_{2}$
$R_{1} \times R_{2} \times\left\{S_{\text {new }}\right\}$
None of the above

Save Answer

Q2.3 Union: construction for PDAs

Given $M_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, \Gamma_{2}, \delta_{2}, q_{2}, F_{2}\right)$ with $L\left(M_{1}\right)=L_{1}$ and $L\left(M_{2}\right)=L_{2}$ and $Q_{1} \cap Q_{2}=\emptyset$ and $q_{\text {new }} \notin Q_{1} \cup Q_{2}$. Which of the following part of the definition of the transition function indicates that in a PDA $M=\left(Q_{1} \cup Q_{2} \cup\left\{q_{n e w}\right\}, \Sigma, \Gamma_{1} \cup \Gamma_{2}, \delta, q_{n e w}, F_{1} \cup F_{2}\right)$ so that $L(M)=$ $L\left(M_{1}\right) \cup L\left(M_{2}\right)$ there is a nondeterministic choice to transition from $q_{\text {new }}$ to either one of the start states of M_{1} and M_{2} ?
$\delta\left(q_{\text {new }}, \varepsilon, \varepsilon\right)=\left(q_{1}, q_{2}, \varepsilon\right)$
$\delta\left(q_{\text {new }}, q_{1}, q_{2}\right)=\{(\varepsilon, \varepsilon)\}$
$\delta\left(q_{\text {new }}, \varepsilon\right)=\left\{\left(q_{1}, q_{2}\right)\right\}$
$\delta\left(q_{\text {new }}, \varepsilon, \varepsilon\right)=\left\{\left(q_{1}, \varepsilon\right),\left(q_{2}, \varepsilon\right)\right\}$
None of the above

Save Answer

Q2.4 Set-wise Concatenation

1 Point
True or false: The following construction can be used to prove that the class of context-free languages is closed under set-wise concatenation.

Given $G_{1}=\left(V_{1}, \Sigma, R_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, \Sigma, R_{2}, S_{2}\right)$ that are CFGs with $L\left(G_{1}\right)=L_{1}$ and $L\left(G_{2}\right)=L_{2}$ and $V_{1} \cap V_{2}=\emptyset$ and $S_{n e w} \notin V_{1} \cup V_{2}$. Then we define a new grammar as $\left(V_{1} \cup V_{2} \cup\left\{S_{\text {new }}\right\}, \Sigma, R_{1} \cup R_{2} \cup\left\{S_{\text {new }} \rightarrow\right.\right.$ $\left.S_{1} S_{2}\right\}, S_{\text {new }}$). We can prove that this new grammar generates the set-wise concatenation $L_{1} \circ L_{2}$.

True
False

Save Answer

Q2.5 Kleene Star

 1 PointTrue or false: The following construction can be used to prove that the class of context-free languages is closed under Kleene star.

Consider a CFG (V, Σ, R, S) and suppose $S_{\text {new }} \notin V$, then we define a new grammar as $\left(V \cup\left\{S_{n e w}\right\}, \Sigma, R \cup\left\{S_{n e w} \rightarrow \varepsilon, S_{n e w} \rightarrow S_{n e w} S\right\}, S_{n e w}\right)$. We can prove that this new grammar generates the Kleene star of the language of the given CFG.

True
False

Save Answer

Q3 Closure
 2 Points

Fix an alphabet Σ.

Q3.1 Regular languages
 1 Point

(Select all and only correct choices.)
The class of regular languages over Σ is closed under complementation.The class of regular languages over Σ is closed under union.The class of regular languages over Σ is closed under intersection.The class of regular languages over Σ is closed under set-wise concatenation.

The class of regular languages over Σ is closed under Kleene star.

Save Answer

Q3.2 Context-free languages

1 Point
(Select all and only correct choices.)
The class of context-free languages over Σ is closed under complementation.

The class of context-free languages over Σ is closed under union.

The class of context-free languages over Σ is closed under intersection.

The class of context-free languages over Σ is closed under set-wise concatenation.

The class of context-free languages over Σ is closed under Kleene star.

Save Answer

Q4 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)
\square

[^0]
[^0]: Save Answer

