Week 5 Monday Review Quiz

Q1 CFG definition 2 Points

Consider the CFG defined as $(\{A,B\},\{0,1\},R,A)$ with rules $A o 0A0\mid 0A1\mid 1A0\mid 1A1\mid 1.$

Q1.1 (a)

1 Point

Select all and only the examples below that are a variable for this CFG?

$\Box A$	
0	
ε	

Q1.2 (b) 1 Point

Select all and only the examples below that are a terminal for this CFG?

$\Box A$		
0		
$\Box \varepsilon$		

Q2 CFG derivations 3 Points

Consider the CFG defined as $(\{A,B\},\{0,1\},R,A)$ with rules $A o 0A0\mid 0A1\mid 1A0\mid 1A1\mid 1.$

Q2.1 (a) 1 Point

Select all and only the examples below that might appear in the start of a derivation of this grammar as a one step application of a production rule.

Q2.2 (b) 2 Points

Select all and only the examples below that are in the language generated by this context free grammar.

Ε	
0	
1	
111	
□ 10101	

Q3 Designing a CFG

2 Points

Is there a CFG G with $L(G) = \emptyset$?

- \bigcirc No, because every grammar has at least one variable.
- \bigcirc No, because every alphabet (and hence the set of terminals) is nonempty.
- \bigcirc No, because \emptyset is a regular language.
- \bigcirc Yes, for example the grammar $(\{S\}, \{0,1\}\{S o S\}, S)$

Q4 Analyzing a CFG 3 Points

Consider the alphabet $\{a, b\}$. Select all and only the grammars below that generate the language $\{abba\}$

None of the above

Save Answer

Q5 Feedback 0 Points

Any feedback about today's material or comments you'd like to share? (Optional; not for credit)

Save All Answers

Submit & View Submission >

Week 5 Wednesday Review Quiz

Q1 CFL example 2 Points

Consider the language $\{a^ib^j\mid j\geq i\geq 0\}$ over the alphabet $\{a,b\}$.

Q1.1 CFG 1 Point

Which is true?

- \bigcirc There is exactly one CFG that generates this language.
- \bigcirc There are many different CFGs that each generate this language.
- \bigcirc There are no CFGs that generate this language.
- \bigcirc None of the above.

Save Answer

Q1.2 PDA

1 Point

Which is true? (select all and only correct choices)

There is a PDA that recognizes this language.

There is a NFA that recognizes this language.

There is a DFA that recognizes this language.

] None of the above.

Q2.1 Union: strategy

2 Points

To prove that the set of all context-free languages is closed under the union operation ... (select all and only the correct ways to finish this sentence)

we define a general procedure which takes two context-free grammars and produces a new grammar that generates the union of the languages of the input CFGs.

we define a general procedure which takes two PDA and produces a new
PDA that recognizes the union of the languages of the input PDAs.

None of the above.

Save Answer

Q2.2 Union: construction for CFGs

1 Point

Given $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ that are CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$ and $V_1 \cap V_2 = \emptyset$ and $S_{new} \notin V_1 \cup V_2$. Which of the following sets of rules complete the CFG $G = (V_1 \cup V_2 \cup \{S_{new}\}, \Sigma, R, S_{new})$ so that $L(G) = L(G_1) \cup L(G_2)$?

- $\bigcirc R_1 \cup R_2$
- $\bigcirc R_1 \cup R_2 \cup \{S_{new} \rightarrow S_1 \mid S_2\}$
- $\bigcirc R_1 imes R_2$
- $\bigcirc R_1 imes R_2 imes \{S_{new}\}$
- \bigcirc None of the above

Q2.3 Union: construction for PDAs

1 Point

Given $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \Gamma_2, \delta_2, q_2, F_2)$ with $L(M_1) = L_1$ and $L(M_2) = L_2$ and $Q_1 \cap Q_2 = \emptyset$ and $q_{new} \notin Q_1 \cup Q_2$. Which of the following part of the definition of the transition function indicates that in a PDA $M = (Q_1 \cup Q_2 \cup \{q_{new}\}, \Sigma, \Gamma_1 \cup \Gamma_2, \delta, q_{new}, F_1 \cup F_2)$ so that $L(M) = L(M_1) \cup L(M_2)$ there is a nondeterministic choice to transition from q_{new} to either one of the start states of M_1 and M_2 ?

- $igcap_{\delta}(q_{new},arepsilon,arepsilon)=(q_1,q_2,arepsilon)\ igcap_{\delta}(q_{new},q_1,q_2)=\{(arepsilon,arepsilon)\}$
- $\bigcirc \delta(q_{new},arepsilon) = \{(q_1,q_2)\}$

$$igcap \delta(q_{new},arepsilon,arepsilon) = \{(q_1,arepsilon),(q_2,arepsilon)\}$$

 \bigcirc None of the above

Save Answer

Q2.4 Set-wise Concatenation

1 Point

True or false: The following construction can be used to prove that the class of context-free languages is closed under set-wise concatenation.

Given $G_1 = (V_1, \Sigma, R_1, S_1)$ and $G_2 = (V_2, \Sigma, R_2, S_2)$ that are CFGs with $L(G_1) = L_1$ and $L(G_2) = L_2$ and $V_1 \cap V_2 = \emptyset$ and $S_{new} \notin V_1 \cup V_2$. Then we define a new grammar as $(V_1 \cup V_2 \cup \{S_{new}\}, \Sigma, R_1 \cup R_2 \cup \{S_{new} \rightarrow S_1S_2\}, S_{new})$. We can prove that this new grammar generates the set-wise concatenation $L_1 \circ L_2$.

○ True

○ False

Q2.5 Kleene Star 1 Point

True or false: The following construction can be used to prove that the class of context-free languages is closed under Kleene star.

Consider a CFG (V, Σ, R, S) and suppose $S_{new} \notin V$, then we define a new grammar as $(V \cup \{S_{new}\}, \Sigma, R \cup \{S_{new} \rightarrow \varepsilon, S_{new} \rightarrow S_{new}S\}, S_{new})$. We can prove that this new grammar generates the Kleene star of the language of the given CFG.

○ True

○ False

Save Answer

Q3 Closure 2 Points

Fix an alphabet Σ .

Q3.1 Regular languages 1 Point

(Select all and only correct choices.)

] The class of regular languages over Σ is closed under complementation.

 \Box The class of regular languages over Σ is closed under union.

] The class of regular languages over Σ is closed under intersection.

The class of regular languages over Σ is closed under set-wise concatenation.

] The class of regular languages over Σ is closed under Kleene star.

Q3.2 Context-free languages 1 Point

(Select all and only correct choices.)

$\hfill\square$ The class of context-free languages over Σ is closed under complementation.
$\hfill \square$ The class of context-free languages over Σ is closed under union.
\Box The class of context-free languages over Σ is closed under intersection.
$\hfill\square$ The class of context-free languages over Σ is closed under set-wise concatenation.
$\hfill \square$ The class of context-free languages over Σ is closed under Kleene star.
Save Answer

Q4 Feedback 0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Save All Answers

Submit & View Submission >