
Week5

Week 5 at a glance

Textbook reading: Chapter 2

Before Monday, read Introduction to Section 2.1 (pages 101-102).

Before Wednesday, read Section 2.1

Before Friday, read Theorem 2.20.

For Week 6 Monday: Page 165-166 Introduction to Section 3.1.

We will be learning and practicing to:

• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Describe and use models of computation that don’t involve state machines.

∗ Identify the components of a formal definition of a context-free grammar (CFG)

∗ Derive strings in the language of a given CFG

∗ Determine the language of a given CFG

∗ Design a CFG generating a given language

∗ Use context-free grammars and relate them to languages and pushdown au-

tomata.

– Use precise notation to formally define the state diagram of a Turing machine

– Use clear English to describe computations of Turing machines informally.

∗ Design a PDA that recognizes a given language.

– Give examples of sets that are context-free (and prove that they are).

∗ State the definition of the class of context-free languages

∗ Explain the limits of the class of context-free languages

∗ Identify some context-free sets and some non-context-free sets

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

– Describe and prove closure properties of classes of languages under certain operations.

∗ Apply a general construction to create a new PDA or CFG from an example

one.

∗ Formalize a general construction from an informal description of it.

∗ Use general constructions to prove closure properties of the class of context-free

langugages.

∗ Use counterexamples to prove non-closure properties of the class of context-free

langugages.

CC BY-NC-SA 2.0 Version January 27, 2025 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at
PrairieTest (http://us.prairietest.com) . The first Test 1 sessions are next week!

Review Quiz 4 on PrairieLearn (http://us.prairielearn.com), due 2/5/2025

Homework 3 submitted via Gradescope (https://www.gradescope.com/), due 2/6/2025

Review Quiz 5 on PrairieLearn (http://us.prairielearn.com), due 2/12/2025

CC BY-NC-SA 2.0 Version January 27, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: More Pushdown Automata

Definition A pushdown automaton (PDA) is specified by a 6-tuple (Q,⌃,�, �, q0, F) where Q is the
finite set of states, ⌃ is the input alphabet, � is the stack alphabet,

� : Q⇥ ⌃" ⇥ �" ! P(Q⇥ �")

is the transition function, q0 2 Q is the start state, F ✓ Q is the set of accept states.

For the PDA state diagrams below, ⌃ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
� = {$,#}

q0start q1

q2 q3q4

", "; $

0, "; #

", "; "
1,#; "

1, "; "
", $; "

� = {., 1}

q0start q1

q2 q3 q4

q5 q6

", ";.

1, "; 1

", "; "

", "; "

0, 1, ; "

",.; "

1, "; "

0, "; "

", "; "

1, 1; "

",.; "

{0i1j0k | i, j, k � 0}

Note: alternate notation is to replace ; with ! on arrow labels.

CC BY-NC-SA 2.0 Version January 27, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Corollary: for each language L over ⌃, if there is an NFA N with L(N) = L then there is a PDA M with
L(M) = L

Proof idea: Declare stack alphabet to be � = ⌃ and then don’t use stack at all.

Big picture: PDAs are motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

CC BY-NC-SA 2.0 Version January 27, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: Context-free Grammars and Languages

Definitions below are on pages 101-102.

Term Typical symbol Meaning

or Notation

Context-free grammar (CFG) G G = (V,⌃, R, S)
The set of variables V Finite set of symbols that represent phases in pro-

duction pattern
The set of terminals ⌃ Alphabet of symbols of strings generated by CFG

V \ ⌃ = ;
The set of rules R Each rule is A ! u with A 2 V and u 2 (V [⌃)⇤

The start variable S Usually on left-hand-side of first/ topmost rule

Derivation S) · · ·) w Sequence of substitutions in a CFG (also written
S)⇤

w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the
context-free grammar G

L(G) The set of strings for which there is a derivation in
G. Symbolically: {w 2 ⌃⇤ | S)⇤

w} i.e.

{w 2 ⌃⇤ | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

Examples of context-free grammars, derivations in those grammars, and the languages gen-

erated by those grammars

G1 = ({S}, {0}, R, S) with rules

S ! 0S

S ! 0

In L(G1) . . .

Not in L(G1) . . .

CC BY-NC-SA 2.0 Version January 27, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

G2 = ({S}, {0, 1}, R, S)
S ! 0S | 1S | "

In L(G2) . . .

Not in L(G2) . . .

({S, T}, {0, 1}, R, S) with rules

S ! T1T1T1T

T ! 0T | 1T | "

In L(G3) . . .

Not in L(G3) . . .

G4 = ({A,B}, {0, 1}, R,A) with rules

A ! 0A0 | 0A1 | 1A0 | 1A1 | 1

In L(G4) . . .

Not in L(G4) . . .

CC BY-NC-SA 2.0 Version January 27, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {anbn | n � 0}

Design a CFG to generate the language {aibj | j � i � 0}

Design a PDA to recognize the language {aibj | j � i � 0}

CC BY-NC-SA 2.0 Version January 27, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Context-free and non-context-free languages

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet ⌃ is called CFL.

Consequences:

• Quick proof that every regular language is context free

• To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (via CFGs or PDAs) depending on which is easier

• To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

– PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

– PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version January 27, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over ⌃. Goal: L1 [L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,⌃,�1, �1, q1, F1) and M2 = (Q2,⌃,�2, �2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,⌃, R1, S1) and G2 = (V2,⌃, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

CC BY-NC-SA 2.0 Version January 27, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and L2 are context-free languages over ⌃. Goal: L1 � L2 is also context-free.

Approach 1: with PDAs

Let M1 = (Q1,⌃,�1, �1, q1, F1) and M2 = (Q2,⌃,�2, �2, q2, F2) be PDAs with L(M1) = L1 and L(M2) = L2.

Define M =

Approach 2: with CFGs

Let G1 = (V1,⌃, R1, S1) and G2 = (V2,⌃, R2, S2) be CFGs with L(G1) = L1 and L(G2) = L2.

Define G =

Summary

Over a fixed alphabet ⌃, a language L is regular

i↵ it is described by some regular expression
i↵ it is recognized by some DFA
i↵ it is recognized by some NFA

Over a fixed alphabet ⌃, a language L is context-free

i↵ it is generated by some CFG
i↵ it is recognized by some PDA

Fact: Every regular language is a context-free language.

Fact: There are context-free languages that are not nonregular.

Fact: There are countably many regular languages.

Fact: There are countably infinitely many context-free languages.

Consequence: Most languages are not context-free!

CC BY-NC-SA 2.0 Version January 27, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples of non-context-free languages

{anbncn | 0 n, n 2 Z}
{aibjck | 0 i j k, i 2 Z, j 2 Z, k 2 Z}
{ww | w 2 {0, 1}⇤}

(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvxyz where (1) for each i � 0, uvixyiz 2 A, (2) |uv| > 0, (3) |vxy| p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to
them gives an element in X.

True/False Closure claim
True The set of integers is closed under multiplication.

8x8y ((x 2 Z ^ y 2 Z) ! xy 2 Z)
True For each set A, the power set of A is closed under intersection.

8A18A2 ((A1 2 P(A) ^ A2 2 P(A) 2 Z) ! A1 \ A2 2 P(A))
The class of regular languages over ⌃ is closed under complementation.

The class of regular languages over ⌃ is closed under union.

The class of regular languages over ⌃ is closed under intersection.

The class of regular languages over ⌃ is closed under concatenation.

The class of regular languages over ⌃ is closed under Kleene star.

The class of context-free languages over ⌃ is closed under complementation.

The class of context-free languages over ⌃ is closed under union.

The class of context-free languages over ⌃ is closed under intersection.

The class of context-free languages over ⌃ is closed under concatenation.

The class of context-free languages over ⌃ is closed under Kleene star.

CC BY-NC-SA 2.0 Version January 27, 2025 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

