Weekb

Week 5 at a glance

Textbook reading: Chapter 2
Before Monday, read Introduction to Section 2.1 (pages 101-102).

Before Wednesday, read Section 2.1
Before Friday, read Theorem 2.20.

For Week 6 Monday: Page 165-166 Introduction to Section 3.1.

We will be learning and practicing to:
e (learly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

— Describe and use models of computation that don’t involve state machines.

x Identify the components of a formal definition of a context-free grammar (CFG)
x Derive strings in the language of a given CFG
x Determine the language of a given CFG
x Design a CFG generating a given language
x Use context-free grammars and relate them to languages and pushdown au-
tomata.
— Use precise notation to formally define the state diagram of a Turing machine
— Use clear English to describe computations of Turing machines informally.
x Design a PDA that recognizes a given language.

— Give examples of sets that are context-free (and prove that they are).

x State the definition of the class of context-free languages
x Explain the limits of the class of context-free languages
x Identify some context-free sets and some non-context-free sets

e Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

— Describe and prove closure properties of classes of languages under certain operations.

x Apply a general construction to create a new PDA or CFG from an example
one.

x Formalize a general construction from an informal description of it.

x Use general constructions to prove closure properties of the class of context-free
langugages.

x Use counterexamples to prove non-closure properties of the class of context-free
langugages.
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TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at
PrairieTest (http://us.prairietest.com) . The first Test 1 sessions are next week!

Review Quiz 4 on PrairieLearn (http://us.prairielearn.com), due 2/5/2025
Homework 3 submitted via Gradescope (https://www.gradescope.com/), due 2/6/2025

Review Quiz 5 on PrairieLearn (http://us.prairielearn.com), due 2/12/2025
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Monday: More Pushdown Automata

Definition A pushdown automaton (PDA) is specified by a 6-tuple (@, %, T, 9, qo, F') where @ is the
finite set of states, X is the input alphabet, I' is the stack alphabet, 7
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is the transition function, gy € @) is the start state, F' C () is the set of accept states.

For the PDA state diagrams below, ¥ = {0, 1}.
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Note: alternate notation is to replace ; with — on arrow labels.
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Corollary: for each language L over ¥, if there is an NFA N with L(N) = L then there is a PDA M with
L(M)=1L

Proof idea: Declare stack alphabet to be I' = 3 and then don’t use stack at all.
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Big picture: PDAs are motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.
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Wednesday: Context-free Grammars and Languages

Definitions below are on pages 101-102.

Term Typical symbol Meaning
or Notation
Context-free grammar (CFG) G G= (V.5 R,9)
The set of variables \%4 Finite set of symbols that represent phases in pro-
duction pattern
The set of terminals Y Alphabet of symbols of strings generated by CFG
VN =>0
The set of rules R Each rule is A — u with A € V and v € (V U X)*
The start variable 5] Usually on left-hand-side of first/ topmost rule
Derivation S=.--=w Sequence of substitutions in a CFG (also written

S =* w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the L(G) The set of strings for which there is a derivation in

context-free grammar G G. Symbolically: {w € £* | § =* w} ie.

{w € ¥* | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

—_—

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars
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Design a CFG to generate the language {a™b" | n > 0} — Yo es»SJ\O\(
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Friday: Context-free and non-context-free languages

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet ¥ is called CFL. Coodext - L \O\W&

Consequences:

' g =0 :
To‘ﬁ\lf;fk T n20)

Ve Quick proof that every regular language is context free S €t 2T

\/ e To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (vialCFGs or(PDAs)/depending on which is easier

\/ e To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

— PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

— PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.
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Suppose L1 and Lo are context-free languages over ¥. Goal: Ly U Ly is also context-free.
Approach 1: with PDAs
Let @ (Ql, Z, Pl, (51, q1, Fl) and@ (QQ, E, FQ, (52, qo, FQ) be PDAs with L(M1> = Ll and L(MQ) = LQ.
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Approach 2: with CFGs

Let G1 = (‘/1, Z, Rl, Sl) and G2 = (‘/Q,Z,RZ, SQ) be CFGS Wlth L(Gl) = Ll and L(Gg) = LQ.
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Suppose L; and L, are context-free languages over Y. Goal: L o Ly is also context-free.
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Let M1 = (gl, Z, Fl,él,ql,Fl) and M2 = (Q_Q, E,FQ,(SQ,(]Q,E_Q) be PDAS Wlth L(M1> = Ll and L(Mg) = LQ.
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Approach 2: with CFGs
Let G1 = (‘/1, Z, Rl, Sl) and G2 = (%,Z,RQ, Sg) be CFGs with L(G1> = L1 and L(Gg) = Lg.
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Summary

Over a fixed alphabet X, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet X, a language L is context-free ¥
iff it is generated by some CFG (5 CZ >
iff it is recognized by some PDA AN \&\[\%\&%_e N

Fact: Every regular language is a context-free language.
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Fact: There are context-free languages that are not nonregular.
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Fact: There are countably many regular languages. _

Fact: There are countably infinitely many context-free languages.
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Consequence: Most languages are not context-free!
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Examples of non-context-free languages
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(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvzyz where (1) for each i > 0, uwv'ay'z € A, (2) |uv|] > 0, (3) [vay| < p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to

them gives an element in X.
What  Awsut a‘%y&xw(?-—w—de\ L

True/False | Closure claim

True The set of integers is closed under multiplication.
VaVy( (e € ZANy € Z) > xy €Z)
True For each set A, the power set of A is closed under intersection.

VAIVAs (A € P(A)NAs € P(A) €Z) - A1 N Ay € P(A))
The class of regular languages over Y is closed under complementation.

Wl
(W

The class of regular languages over ¥ is closed under union.

The class of regular languages over Y is closed under intersection.

A AL
The class of regular languages over ¥ is closed under concatenation.
\Cno.
_/ The class of regular languages over ¥ is closed under Kleene star.
QN
— The class of context-free languages over ¥ is closed under complementation.
Mol se
The class of context-free languages over ¥ is closed under union.
YWl

The class of context-free languages over ¥ is closed under intersection.
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The class of context-free languages over ¥ is closed under concatenation.

The class of context-free languages over ¥ is closed under Kleene star.
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