Weekb

Week 5 at a glance

Textbook reading: Chapter 2
Before Monday, read Introduction to Section 2.1 (pages 101-102).

Before Wednesday, read Section 2.1
Before Friday, read Theorem 2.20.

For Week 6 Monday: Page 165-166 Introduction to Section 3.1.

We will be learning and practicing to:
e (learly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

— Describe and use models of computation that don’t involve state machines.

x Identify the components of a formal definition of a context-free grammar (CFG)
x Derive strings in the language of a given CFG
x Determine the language of a given CFG
x Design a CFG generating a given language
x Use context-free grammars and relate them to languages and pushdown au-
tomata.
— Use precise notation to formally define the state diagram of a Turing machine
— Use clear English to describe computations of Turing machines informally.
x Design a PDA that recognizes a given language.

— Give examples of sets that are context-free (and prove that they are).

x State the definition of the class of context-free languages
x Explain the limits of the class of context-free languages
x Identify some context-free sets and some non-context-free sets

e Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

— Describe and prove closure properties of classes of languages under certain operations.

x Apply a general construction to create a new PDA or CFG from an example
one.

x Formalize a general construction from an informal description of it.

x Use general constructions to prove closure properties of the class of context-free
langugages.

x Use counterexamples to prove non-closure properties of the class of context-free
langugages.

CC BY-NC-SA 2.0 Version January 27, 2025 (1)

https://creativecommons.org/licenses/by-nc-sa/2.0/

TODO:

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at
PrairieTest (http://us.prairietest.com) . The first Test 1 sessions are next week!

Review Quiz 4 on PrairieLearn (http://us.prairielearn.com), due 2/5/2025
Homework 3 submitted via Gradescope (https://www.gradescope.com/), due 2/6/2025

Review Quiz 5 on PrairieLearn (http://us.prairielearn.com), due 2/12/2025

CC BY-NC-SA 2.0 Version January 27, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Monday: More Pushdown Automata

Definition A pushdown automaton (PDA) is specified by a 6-tuple (@, %, T, 9, qo, F') where @ is the
finite set of states, X is the input alphabet, I' is the stack alphabet, 7

QA yrro

5:m€2\x@§x@—>f(gx1}) Gownva.

is the transition function, gy € @) is the start state, F' C () is the set of accept states.

For the PDA state diagrams below, ¥ = {0, 1}.

Mathematical description of language State diagram of PDA recognizing language
= {$,#} S Leut OuAput
AN AL Fol(eacn
3,0 \ \ o}%g O>poS\ e H (000,58)]
o 2-0 O" /\0(:’\’; —L\ﬂzm - O €] # Q- i ¢
£ = o 1=
°bo,2 i«) {(%’\‘$) g
ﬁ)o > ﬂ)'\ > Ob’— > Gk"\ ACC start —)‘»‘@»
o o e B
O\ I\J/ e, % e .
Ob“’%“%\)%l’%s) 7,)%1.\
L H Qg_g eyl Ll \
(% Q0.9 \%7\%5 ,C'—G‘\q} , %0;\3 ,73,#}) D ‘6503%&/
['= {%,1} e O
= Cw:*:;\\/\%—i (\w\‘) (eak Ac,.

0,15;¢ Lge

o e U
J TEE a0 (el
. ‘€
347\ OW\ 1'\ \ (\\m7/o} start _,‘ﬂ M%

\&%W\a@? Unde 5«0\53{0“\/\

- i’g’i%% NE A ’_\
{Oiljok |i,j:k20} 0>%,2 A.25¢ gt
oy 3= - sv\lc Q. i o~

Note: alternate notation is to replace ; with — on arrow labels.

—_—

CC BY-NC-SA 2.0 Version January 27, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Corollary: for each language L over ¥, if there is an NFA N with L(N) = L then there is a PDA M with
L(M)=1L

Proof idea: Declare stack alphabet to be I' = 3 and then don’t use stack at all.
Cinven NEA (&, %, OBDQFB e le
S T v H
?Dp\ (@,E\Zﬁ "l o Qb'3
L ARS, ~2s %ﬁ)CQK§<5

AN AN SRR PN D e

=

% CCQL) x t@) _ VT ﬂ)'Gg(CGGx)Bﬁ

& OBEQ,Df e, we

e

(/ZS Y Qe & DF’(GEF-MEQZ

Big picture: PDAs are motivated by wanting to add some memory of unbounded size to NFA. How do we
accomplish a similar enhancement of regular expressions to get a syntactic model that is more expressive?

DFA, NFA, PDA: Machines process one input string at a time; the computation of a machine on its input
string reads the input from left to right.

Regular expressions: Syntactic descriptions of all strings that match a particular pattern; the language
described by a regular expression is built up recursively according to the expression’s syntax

Context-free grammars: Rules to produce one string at a time, adding characters from the middle,
beginning, or end of the final string as the derivation proceeds.

CC BY-NC-SA 2.0 Version January 27, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: Context-free Grammars and Languages

Definitions below are on pages 101-102.

Term Typical symbol Meaning
or Notation
Context-free grammar (CFG) G G= (V.5 R,9)
The set of variables \%4 Finite set of symbols that represent phases in pro-
duction pattern
The set of terminals Y Alphabet of symbols of strings generated by CFG
VN =>0
The set of rules R Each rule is A — u with A € V and v € (V U X)*
The start variable 5] Usually on left-hand-side of first/ topmost rule
Derivation S=.--=w Sequence of substitutions in a CFG (also written

S =* w). At each step, we can apply one rule
to one occurrence of a variable in the current string
by substituting that occurrence of the variable with
the right-hand-side of the rule. The derivation must
end when the current string has only terminals (no
variables) because then there are no instances of
variables to apply a rule to.

Language generated by the L(G) The set of strings for which there is a derivation in

context-free grammar G G. Symbolically: {w € £* | § =* w} ie.

{w € ¥* | there is derivation in G that ends in w}

Context-free language A language that is the language generated by some
context-free grammar

—_—

Examples of context-free grammars, derivations in those grammars, and the languages gen-
erated by those grammars

Gy = ({S},{0}, B, S) with rules LC@)-= LC CD*)
S =08 __%‘QL\‘\7D”§

S—0
Ecdwenges o shvas S
In L(Gy) ... Sﬁo e o AededNea e e O Q_QQ\A

Notin L(G1) .. £ Leocasse @Cn dechochan iy Gn orest sl stk S
Q ard (e R Wae O\ A Q) s

Wove S om1ns aad a O T NeelNin
- D QQCV\??\QE% \C\[_CG,'\\\W\“s\\l‘a\t(A ke ave') <
CC BY-NC-SA 2.0 Version January 27, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

aovena s
V / © - o?
Gy = ({S},{0,1}, R, S) Yoo &)

== S—C>9()S|1S|s ® - —/\\\3
Y e o ® ® S — g
S= OI= OAISOMNI= 01108 0D -
Nehee LC@,)=307"
Not in L(Gy) ... Nonel
({S,T},{0,1}, R, S) with rules
T ; k (O § = TiTiTIT oM\ detieimons “,;\\ ;:iﬁu

5 DX v\ "KK\
@% & e O

IDL(Gg) @ @
Sg TATAA T _—\—Cﬁ@ 1 l—@) MTAT=S AT = "1
\~ o~
L_Ce)g): L (2* 1 2 *3 % w € ?0 '\l \ agg.g\:(*:,\‘lc Agg
Not in L(G3) ...
s L N\ . OOODOD1!
e G\ asT
= ith rules VD) T e
Gy ({\I }i___} }i ‘)ﬂth 1 ® @ @ @ @ \l,\\‘\\f\j\< © o
2w A — 040 | 0AL | 140 | 1AL | 1 e
In L(Gy) ... L_CG) Slwe-—ﬁo /\§ \ TS \(»N\’(V\
A% \ O ‘(V\\Aé\e oo aceX s ﬂk
@ — a0\ o
%\55 oA = 010 _wik_%«
A= OAn o1
Not in L(G4)
O 100

CC BY-NC-SA 2.0 Version January 27, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Design a CFG to generate the language {a™b" | n > 0} — Yo es»SJ\O\(

< igi&, %Qb\ak, =, 33 - coctexk - SCee ?
- D \ z

R %\\f@f\ \él
. L o D eI b= anklo
ga\’v\?\c AZ(‘\\)O’C‘(\@{\)
Design a CFG to generate the language {a't’ | j > i > 0} (M\\)&B

\Ml@v\ od\ YO S)ﬂ\o%g O RWND Wa\ks

ALY L'

—~———
S e

($2%, Tabt, R , S
wahexe _ =3 S'\\mx\ \’\j

SAZ\QSE\S\D

Design a PDA to recognize the language {a't’ | j > i > 0}

O 5,00 o, *52 L,es52

2,8, % . s.€528 ' =,3 s Q
GG

Uodoked oS avd 'S

CC BY-NC-SA 2.0 Version January 27, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: Context-free and non-context-free languages

Theorem 2.20: A language is generated by some context-free grammar if and only if it is recognized by
some push-down automaton.

Definition: a language is called context-free if it is the language generated by a context-free grammar.
The class of all context-free language over a given alphabet ¥ is called CFL. Coodext - L \O\W&

Consequences:

' g =0 :
To‘ﬁ\lf;fk T n20)

Ve Quick proof that every regular language is context free S €t 2T

\/ e To prove closure of the class of context-free languages under a given operation, we can choose either
of two modes of proof (vialCFGs or(PDAs)/depending on which is easier

\/ e To fully specify a PDA we could give its 6-tuple formal definition or we could give its input alphabet,
stack alphabet, and state diagram. An informal description of a PDA is a step-by-step description of
how its computations would process input strings; the reader should be able to reconstruct the state
diagram or formal definition precisely from such a descripton. The informal description of a PDA can
refer to some common modules or subroutines that are computable by PDAs:

— PDAs can “test for emptiness of stack” without providing details. How? We can always push
a special end-of-stack symbol, $, at the start, before processing any input, and then use this
symbol as a flag.

— PDAs can “test for end of input” without providing details. How? We can transform a PDA to
one where accepting states are only those reachable when there are no more input symbols.

CC BY-NC-SA 2.0 Version January 27, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L1 and Lo are context-free languages over ¥. Goal: Ly U Ly is also context-free.
Approach 1: with PDAs
Let @ (Ql, Z, Pl, (51, q1, Fl) and@ (QQ, E, FQ, (52, qo, FQ) be PDAs with L(M1> = Ll and L(MQ) = LQ.

Define M — (@ Z’—P\S\ObW)F\QFz,‘B a%sum'\% Q. ~Q, = &
wew ¥ QVE,
Deliae A= .0 Q, © ?%ﬂevok

T = LUy,
_
5 Qa xzz”‘s—@(=

= - = Qe T \\9=£
SC Gyany) =) 1@ (9% ar % :

K (@bj a,\,)3 %, ¢ Q. , a&Z,EC’T«i

S~ T

'S), C (%30\)\0\3 %Q@l ‘G\C_Za\be 2
> e UaSe

Approach 2: with CFGs

Let G1 = (‘/1, Z, Rl, Sl) and G2 = (‘/Q,Z,RZ, SQ) be CFGS Wlth L(Gl) = Ll and L(Gg) = LQ.

peine i—=(N, UV, U §S%T, 3, RURLU§S>S, S5, S)
~ o a\dvenpie
Assooe. NN = 4 . S S,\Se
S ¢\ UNa

CC BY-NC-SA 2.0 Version January 27, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Suppose L; and L, are context-free languages over Y. Goal: L o Ly is also context-free.

g, —
N Mg
Approach 1: with PDAs _‘\E/\@

Let M1 = (gl, Z, Fl,él,ql,Fl) and M2 = (Q_Q, E,FQ,(SQ,(]Q,E_Q) be PDAS Wlth L(M1> = Ll and L(Mg) = LQ.
Define M = L &\ \)Q':_ , Z.’ —T‘\\)T?) g > eb“ > EB

@\\\M PR S e 2 &(W F - S'\N‘\\b-\e ML.H\ ®L

~ swendale W0 QL
B sendae W UTT ack engy Swek © M <

Approach 2: with CFGs
Let G1 = (‘/1, Z, Rl, Sl) and G2 = (%,Z,RQ, Sg) be CFGs with L(G1> = L1 and L(Gg) = Lg.

Deﬁner(\]\\)\/z\/ %SZS)Z) R Rz\){s—> %«?_zi’ SE

CoV, = N OVg | 220 EoNen o~ G
Nrtmg o SE AN V% 74\ N

/—\SS urne

Summary

Over a fixed alphabet X, a language L is regular

iff it is described by some regular expression
iff it is recognized by some DFA
iff it is recognized by some NFA

Over a fixed alphabet X, a language L is context-free ¥
iff it is generated by some CFG (5 CZ >
iff it is recognized by some PDA AN \&\[\%\&%_e N

Fact: Every regular language is a context-free language.

CN\)@X'\ - I((((\O‘Wg

Fact: There are context-free languages that are not nonregular.

Yok T2 ate canxr-{Nee \9«3)0&(Aok afe

o e N\sn -
Fact: There are countably many regular languages. _

Fact: There are countably infinitely many context-free languages.

Lle CFGE i wilden oy SN

Consequence: Most languages are not context-free!

CC BY-NC-SA 2.0 Version January 27, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Examples of non-context-free languages

') ' PA
(De A" neonatA occess S desmuaXwwe ™ Y ‘e
2

v
{a""c" |0 < n,n € Z}
{a'VcF|0<i<j<kicZjcZkecl}

{ww | w e {0,1}7} OV
(Sipser Ex 2.36, Ex 2.37, 2.38)

There is a Pumping Lemma for CFL that can be used to prove a specific language is non-context-free: If A
is a context-free language, there is a number p where, if s is any string in A of length at least p, then s may
be divided into five pieces s = uvzyz where (1) for each i > 0, uwv'ay'z € A, (2) |uv|] > 0, (3) [vay| < p.
We will not go into the details of the proof or application of Pumping Lemma for CFLs this quarter.

Recall: A set X is said to be closed under an operation OP if, for any elements in X, applying OP to

them gives an element in X.
What Awsut a‘%y&xw(?-—w—de\ L

True/False | Closure claim

True The set of integers is closed under multiplication.
VaVy((e € ZANy € Z) > xy €Z)
True For each set A, the power set of A is closed under intersection.

VAIVAs (A € P(A)NAs € P(A) €Z) - A1 N Ay € P(A))
The class of regular languages over Y is closed under complementation.

Wl
(W

The class of regular languages over ¥ is closed under union.

The class of regular languages over Y is closed under intersection.

A AL
The class of regular languages over ¥ is closed under concatenation.
\Cno.
_/ The class of regular languages over ¥ is closed under Kleene star.
QN
— The class of context-free languages over ¥ is closed under complementation.
Mol se
The class of context-free languages over ¥ is closed under union.
YWl

The class of context-free languages over ¥ is closed under intersection.

fa\se_
YW
BYEA'S

The class of context-free languages over ¥ is closed under concatenation.

The class of context-free languages over ¥ is closed under Kleene star.

CC BY-NC-SA 2.0 Version January 27, 2025 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

