Week 1 Monday Review Quiz

Q1 Class website

2 Points

Canvas: https://canvas.ucsd.edu/courses/51649

Q1.1 Access?
1 Point
Can you access the Canvas page for this class?YesNo

Save Answer

Q1.2 Menu items
1 Point
When the home page on Canvas is loaded on a large screen, you should see the following menu bar

$\stackrel{\rightharpoonup}{\Delta}$
 甶
 문
 三
 \square
 \bullet
 ?

What do the menu items represent? (Select all and only the correct choices)
The calendar icon (2nd from top) links to a weekly view of course material. Clicking on a week expands it to show a description of the week and links to lecture notes, supplemental videos, and more.
\square The sidebar icon (3rd from top) links to a detailed class syllabus. You can find our learning outcomes, class policies and norms, grading information, and FAQ about resources like the book and Flap.js.

The textbox icon (middle) links to a listing of the homework assignments and project writeup.
\square The book icon (3rd from bottom) links to a glossary of terms we'll be discussing in class.

The play icon (2nd from bottom) links to a page of supplemental videos

The question mark (bottom) links to a calendar of drop-in group office hours for Q\&A.

Q2 Class logistics

2 Points
We want you to be familiar with class policies and procedures so you are ready to have a successful quarter. Please take a look at the syllabus page on our website and answer the following questions.

Q2.1 (a)

1 Point
What are the graded components for this class? (Select all and only that apply)

Attendance

Review quiz for each class

Homework

Project

Tests

Save Answer

Q2.2 (b)

1 Point
We'll be using Piazza for class discussions. You can access Piazza through our Canvas homepage.

Which questions should you ask as private posts on Piazza (viewable only to the instructors)?

Followup questions on examples from classQuestions about a review quiz
Questions about a homework problem that is "graded for correctness" (rather than for "fair effort completeness")

Q3 \#FinAid

1 Point
At the top of the Canvas page is a link to our \#FinAid assignment. Completing the \#FinAid assignment documents your engagement with the course.
https://canvas.ucsd.edu/courses/51649/quizzes/158899
I have completed and submitted the Canvas assignment.

Save Answer

Q4 Strings and languages
 2 Points

Select all and only the correct choices.
A string over an alphabet Σ is an element of Σ^{*}

A string over an alphabet Σ is a subset of Σ^{*}A language over an alphabet Σ is an element of Σ^{*}A language over an alphabet Σ is a subset of Σ^{*}

Save Answer

Q5 Examples of strings and languages
 3 Points

Select all and only the correct choices.
The empty string ε is a string over any alphabet ΣThe empty string ε is a language over any alphabet ΣThe empty set \emptyset is a string over any alphabet ΣThe empty set \emptyset is a language over any alphabet Σ

The set of all strings over $\Sigma\left(\right.$ written $\left.\Sigma^{*}\right)$ is a string over Σ

The set of all strings over $\Sigma\left(\right.$ written $\left.\Sigma^{*}\right)$ is a language over Σ

Save Answer

Q6 Optional

0 Points
Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)
\square

[^0]
Week 1 Wednesday Review Quiz

Student Name

Search students by name or email...

Q1 Strings in language described by set notation

1 Point
Consider the language
$\{w \mid w$ is a string over $\{0,1\}$ and $|w|$ is an integer multiple of 3$\}$. Which of the following are elements of this language? (Select all and only that apply)The empty setThe empty string0
$\square(1,0,1)$$\{000\}$

Q2 Describing a language with a regular expression 1 Point

Which of the following regular expressions describe the language $\{w \mid w$ is a string over $\{0,1\}$ and $|w|$ is an integer multiple of 3$\}$? (Select all that apply)

$\square(0 \cup 1)^{*}$

$\square((0 \cup 1)(0 \cup 1)(0 \cup 1))^{*}$

$\square((000) \cup(001) \cup(010) \cup(011) \cup(100) \cup(101) \cup(110) \cup$ (111))*
$\square(000)^{*} \cup(001)^{*} \cup(010)^{*} \cup(011)^{*} \cup(100)^{*} \cup(101)^{*} \cup$ $(110)^{*} \cup(111)^{*}$

Save Answer

Q3 Describing a language in mathematical notation

 1 PointThe language over $\{0,1\}$ described by the regular expression 1^{+}is $L\left((1)^{+}\right)=$
(Select all that apply)
The set of all strings that end in 1$\left\{w 1 \mid w \in\{0,1\}^{*}\right\}$The set of all nonempty strings of 1

$$
\left\{1^{n} \mid n \in \mathcal{N}\right\}
$$

Q4 Describing a language in mathematical notation
1 Point
The language over $\Sigma_{1}=\{0,1\}$ described by the regular expression $\Sigma_{1}^{*} 1$ is $L\left(\Sigma_{1}^{*} 1\right)=$
(Select all that apply)The set of all strings that end in 1
$\square\left\{w 1 \mid w \in\{0,1\}^{*}\right\}$The set of all nonempty strings of 1$\left\{1^{n} \mid n \in \mathcal{N}\right\}$

Q5 Strings in language described by set notation

1 Point

Consider the language $X=$
$\{w \mid w$ is a string over Σ and has at least two a 's and exactly one $b\}$ over the alphabet $\Sigma=\{a, b\}$. Which strings of length 3 are elements of this language? (Select all and only that apply)
aababaabbbaababbbabbb

Q6 Strings in language described by regular expression

1 Point

Which strings over the alphabet $\{a, b\}$ are in the language described by the regular expression $(a \cup b)^{*}$? (Select all and only that apply)bbbbbab
$\square(\mathrm{a}, \mathrm{b})$The empty setThe empty string\{aba\}a

Q7 Strings in language described by regular expression 1 Point

Select all and only the strings over $\{a, b\}$ that are in $L\left(a a^{*} \cup b b^{*}\right)$
\square $\varepsilon$$a a$$b a$

Save Answer

Q8 Describing a language with a regular expression
1 Point
Which of the following regular expressions describe the language $\{00,01,10,11\}$? (Select all that apply)
$\square\{00,01,10,11\}$
$\square 00 \cup 01 \cup 10 \cup 11$
$\square(0 \cup 1)(0 \cup 1)$
$\square(00 \cup \emptyset) \cup(01 \cup 10 \cup 11)$$(0 \cup 1)^{*}$

Save Answer

Q9 Describing a language with a regular expression

 2 PointsWhich of the following regular expressions describe the language $\left\{0^{n} 1 \mid\right.$ n is even\}? (Select all that apply)

$\square\left(0^{2 i} 1\right)^{*}$

$\square(\varepsilon \cup 00)^{*} 1$
$\square\left(\varepsilon \cup(00)^{+}\right) 1$
$\square(00)^{*} 1$

Q10 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Save Answer

Save All Answers
Submit \& View Submission >

Week 1 Friday Review Quiz

Student Name

Search students by name or email...

Q1 Combining languages

5 Points
For this question, consider an arbitrary alphabet Σ and, whenever L_{1}, L_{2} are sets of strings over Σ, we can use the following rules to define associated sets of strings:
$\operatorname{SUBSTRING}\left(L_{1}\right):=\left\{w \in \Sigma^{*} \mid\right.$ there exist $a, b \in \Sigma^{*}$ such that $\left.a w b \in L_{1}\right\}$
and
$L_{1} \circ L_{2}:=\left\{w \in \Sigma^{*} \mid w=u v\right.$ for some strings $u \in L_{1}$ and $\left.v \in L_{2}\right\}$
For the statements below, let $\Sigma=\{0,1\}$
be the alphabet.

Select all and only the true statements.
$\operatorname{SUBSTRING}(\{0\})=\operatorname{SUBSTRING}(\{1\})=\{\varepsilon\}$
$\operatorname{SUBSTRING}(\emptyset)=\emptyset$$\operatorname{SUBSTRING}\left(\Sigma^{*}\right)=\Sigma^{*}$$\{0\} \circ\{1\}=\{0,1\}$$\{0,1,01\} \circ\{\varepsilon\}=\{01\}$

Save Answer

Q2 Strings in a language recognized by a DFA 1 Point

Select all (and only) the strings below that are accepted by the DFA.

The empty string

a
\square babababbbbbba

Save Answer

Q3 Describing DFA

 4 PointsConsider the DFA, M, given by the state diagram:

Q3.1 (a)
1 Point
The author of this DFA claims that its formal definition is:
$M=(\{q 0, q 1, q 2, q 3\},\{0,1,2,3\}, \delta, q 0, q 3)$ with δ given by the table below:

Select all and only the components of the formal definition that are correct.
\square Input alphabet
\square Transition functionStart state

Set of accept states

Q3.2 (b)
1 Point
True or False: The empty string is accepted by this DFA.TrueFalse

Q3.3 (c)
1 Point
True or False: $L(M)$ is infinite.True
False

```
Save Answer
```


Q3.4 (d)

1 Point

True or False: If $x \in L(M)$, the string obtained by flipping each bit in x (changing 0 to 1 and 1 to 0) is also in $L(M)$.

TrueFalse

Save Answer

Q4 Feedback

0 Points
Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

[^0]: Save Answer

