Week 1 Monday Review Quiz

Q1 Class website

2 Points

Canvas: <u>https://canvas.ucsd.edu/courses/51649</u>

Q1.1 Access?

1 Point

Can you access the Canvas page for this class?

 \bigcirc Yes

 \bigcirc No

Q1.2 Menu items

1 Point

When the home page on Canvas is loaded on a large screen, you should see the following menu bar

What do the menu items represent? (Select all and only the correct choices)

The calendar icon (2nd from top) links to a weekly view of course material.
Clicking on a week expands it to show a description of the week and links to lecture notes, supplemental videos, and more.

The sidebar icon (3rd from top) links to a detailed class syllabus. You can find our learning outcomes, class policies and norms, grading information, and FAQ about resources like the book and Flap.js.

The textbox icon (middle) links to a listing of the homework assignments and project writeup.

The book icon (3rd from bottom) links to a glossary of terms we'll be discussing in class.

The play icon (2nd from bottom) links to a page of supplemental videos

The question mark (bottom) links to a calendar of drop-in group office hours for Q&A.

Q2 Class logistics 2 Points

We want you to be familiar with class policies and procedures so you are ready to have a successful quarter. Please take a look at the syllabus page on our website and answer the following questions.

Q2.1 (a) 1 Point

What are the graded components for this class? (Select all and only that apply)

Attendance
Review quiz for each class
Homework
Project
Tests

Q2.2 (b) 1 Point

We'll be using Piazza for class discussions. You can access Piazza through our Canvas homepage.

Which questions should you ask as *private* posts on Piazza (viewable only to the instructors)?

- Followup questions on examples from class
- \bigcirc Questions about a review quiz
- Questions about a homework problem that is "graded for correctness" (rather than for "fair effort completeness")

Q3 #FinAid 1 Point

At the top of the Canvas page is a link to our #FinAid assignment. Completing the #FinAid assignment documents your engagement with the course.

https://canvas.ucsd.edu/courses/51649/quizzes/158899

 \bigcirc I have completed and submitted the Canvas assignment.

Q4 Strings and languages 2 Points

Select all and only the correct choices.

 \Box A **string** over an alphabet Σ is an element of Σ^*

 \Box A **string** over an alphabet Σ is a subset of Σ^*

 \Box A **language** over an alphabet Σ is an element of Σ^*

 \Box A **language** over an alphabet Σ is a subset of Σ^*

Q5 Examples of strings and languages ³ Points

Select all and only the correct choices.

$\hfill\square$ The empty string ε is a string over any alphabet Σ
$\hfill\square$ The empty string ε is a language over any alphabet Σ
$\hfill \square$ The empty set \emptyset is a string over any alphabet Σ
$\hfill \square$ The empty set \emptyset is a language over any alphabet Σ
$\hfill\square$ The set of all strings over Σ (written Σ^*) is a string over Σ
$\hfill\square$ The set of all strings over Σ (written Σ^*) is a language over Σ

Save Answer

Q6 Optional 0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Save Answer

Save All Answers

Submit & View Submission >

Week 1 Wednesday Review Quiz

Student Name

Search students by name or email...

Q1 Strings in language described by set notation 1 Point

Consider the language

 $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}.$ Which of the following are elements of this language? (Select all and only that apply)

The empty set
The empty string
$\Box (1,0,1)$
□ {000}

Q2 Describing a language with a regular expression 1 Point

Which of the following regular expressions describe the language $\{w \mid w \text{ is a string over } \{0,1\} \text{ and } |w| \text{ is an integer multiple of } 3\}$? (Select all that apply)

 $\Box (0 \cup 1)^{*}$ $\Box ((0 \cup 1)(0 \cup 1)(0 \cup 1))^{*}$ $\Box ((000) \cup (001) \cup (010) \cup (011) \cup (100) \cup (101) \cup (110) \cup (111))^{*}$ $\Box (000)^{*} \cup (001)^{*} \cup (010)^{*} \cup (011)^{*} \cup (100)^{*} \cup (101)^{*} \cup (101)^{*} \cup (111)^{*}$

Save Answer

Q3 Describing a language in mathematical notation 1 Point

The language over $\{0,1\}$ described by the regular expression 1^+ is $L(\ (1)^+\)=$

(Select all that apply)

 \Box The set of all strings that end in 1

 $\Box \ \{w1 \mid w \in \{0,1\}^*\}$

 $\Box\,$ The set of all nonempty strings of $1\,$

 $\Box \ \{1^n \mid n \in \mathcal{N}\}$

Q4 Describing a language in mathematical notation 1 Point

The language over $\Sigma_1=\{0,1\}$ described by the regular expression Σ_1^*1 is $L(\ \Sigma_1^*1\)=$

(Select all that apply)

Q5 Strings in language described by set notation 1 Point

Consider the language X =

 $\{w \mid w \text{ is a string over } \Sigma \text{ and has at least two } a$'s and exactly one $b\}$ over the alphabet $\Sigma = \{a, b\}$. Which strings of length 3 are elements of this language? (Select all and only that apply)

aaa
🗌 aab
🗌 aba
🗌 abb
🗌 baa
🗌 bab
🗌 bba
🗌 bbb

Q6 Strings in language described by regular expression 1 Point

Which strings over the alphabet $\{a,b\}$ are in the language described by the regular expression $(a\cup b)^*$? (Select all and only that apply)

🗌 bbbb
🗌 bab
(a,b)
The empty set
The empty string
🗌 {aba}
a

Q7 Strings in language described by regular expression

1 Point

Select all and only the strings over	$\{a,b\}$ that are in L	$(aa^*\cup bb^*)$
--------------------------------------	---------------------------	-------------------

arepsilon
aa
ba

Q8 Describing a language with a regular expression 1 Point

Which of the following regular expressions describe the language $\{00, 01, 10, 11\}$? (Select all that apply)

Q9 Describing a language with a regular expression 2 Points

Which of the following regular expressions describe the language $\{0^n 1 \mid n \text{ is even}\}$? (Select all that apply)

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

Save Answer	

Save All Answers

Submit & View Submission >

Week 1 Friday Review Quiz

Student Name

Search students by name or email...

Q1 Combining languages

5 Points

For this question, consider an arbitrary alphabet Σ and, whenever L_1, L_2 are sets of strings over Σ , we can use the following rules to define associated sets of strings:

 $\mathrm{SUBSTRING}(L_1) := \{ w \in \Sigma^* \mid \text{there exist } a, b \in \Sigma^* \text{ such that } awb \in L_1 \}$

and

 $L_1 \circ L_2 := \{w \in \Sigma^* \mid w = uv ext{ for some strings } u \in L_1 ext{ and } v \in L_2 \}$

For the statements below, let $\Sigma = \{0,1\}$ be the alphabet.

Select all and only the true statements.

 $\Box SUBSTRING(\{0\}) = SUBSTRING(\{1\}) = \{\varepsilon\}$

 $\exists SUBSTRING(\emptyset) = \emptyset$

 $\Box SUBSTRING(\Sigma^*) = \Sigma^*$

 $\Box \ \{0\} \circ \{1\} = \{0,1\}$

 $\Box \ \{0, 1, 01\} \circ \{\varepsilon\} = \{01\}$

Q2 Strings in a language recognized by a DFA 1 Point

Select all (and only) the strings below that are accepted by the DFA.

The empty string
a
□ b
🗌 abab
🗌 ab
🗌 bbb
🗌 bba
Save Answer

Q3 Describing DFA

4 Points

Consider the DFA, M, given by the state diagram:

Q3.1 (a) 1 Point

The author of this DFA claims that its formal definition is: M = ({q0, q1, q2, q3}, {0, 1, 2, 3}, δ , q0, q3) with δ given by the table below:

	0	1
q0	q1	q2
q1	q2	q3
q2	q2	q3
q3	q3	q3

Select all and only the components of the formal definition that are correct.

Q3.2 (b) 1 Point True or False: The empty string is accepted by this DFA. True False Save Answer Q3.3 (c) 1 Point True or False: L(M) is infinite. True False Save Answer

Q3.4 (d) 1 Point

True or False: If $x \in L(M)$, the string obtained by flipping each bit in x (changing 0 to 1 and 1 to 0) is also in L(M).

○ True

 \bigcirc False

Save Answer

Q4 Feedback

0 Points

Any feedback about this week's material or comments you'd like to share? (Optional; not for credit)

