Week 10 at a glance

For Monday, Definition 7.1 (page 276).

For Wednesday, Definition 7.7 (page 279).

For Friday: skim through examples in Chapter 7.

We will be learning and practicing to:

- Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason about computation and systems.
 - Use mapping reduction to deduce the complexity of a language by comparing to the complexity of another.
 - * Use appropriate reduction (e.g. mapping, Turing, polynomial-time) to deduce the complexity of a language by comparing to the complexity of another.
 - * Use polynomial-time reduction to prove NP-completeness
 - Classify the computational complexity of a set of strings by determining whether it is decidable or undecidable and recognizable or unrecognizable.
 - * Distinguish between computability and complexity
 - * Articulate motivating questions of complexity
 - * Define NP-completeness
 - * Give examples of PTIME-decidable, NPTIME-decidable, and NP-complete problems
 - Describe several variants of Turing machines and informally explain why they are equally expressive.
 - * Define nondeterministic Turing machines
 - * Use high-level descriptions to define and trace machines (Turing machines and enumerators)

TODO:

Student Evaluations of Teaching forms: Evaluations are open for completion anytime BEFORE 8AM on Saturday. Access your SETs from the Evaluations site

https://academicaffairs.ucsd.edu/Modules/Evals

You will separately evaluate each of your listed instructors for each enrolled course.

Review Quiz 9 on PrairieLearn (http://us.prairielearn.com), due 3/12/2025

Homework 6 submitted via Gradescope (https://www.gradescope.com/), due 3/13/2025

Project submitted via Gradescope (https://www.gradescope.com/), due 3/19/2025

Summary from Week 9

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it's enough to construct an example using any of the equally expressive models.

But: some of the **performance** properties of these models are not equivalent.

Monday: Church-Turing Thesis and Complexity

In practice, computers (and Turing machines) don't have infinite tape, and we can't afford to wait unboundedly long for an answer. "Decidable" isn't good enough - we want "Efficiently decidable".

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the running time depend on the input in the worst-case? average-case? We expect to have to spend more time on computations with larger inputs.

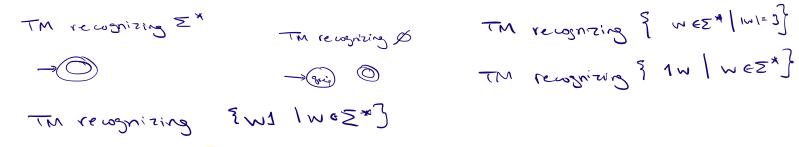
A language is recognizable if there is a TM that accepts all and only strings in this language.

- A language is decidable if there is a The that accepts all and only strings in the language and rejects all and only strings not it language. A language is efficiently decidable if
- * A function is computable if there is a TM that for each input, halts within finitly A function is efficiently computable if _____

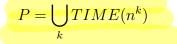
Definition (Sipser 7.1): For M a deterministic decider, its running time is the function $\underline{f} : \mathbb{N} \to \mathbb{N}$ given by $f(n) = \max$ number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

 $TIME(t(n)) = \{L \mid L \text{ is decidable by a Turing machine with running time in } O(t(n))\}$ anguages at a computational protections solvable in no work than t(n) and example of an element of <math>TIME(1) is \mathbb{Z}^* , \mathcal{P} , \mathbb{P}^* , $\mathbb{P$



Definition (Sipser 7.12) : *P* is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine



Theorem (Sipser 7.8): Let t(n) be a function with $t(n) \ge n$. Then every t(n) time deterministic multitape Turing machine has an equivalent $O(t^2(n))$ time deterministic 1-tape Turing machine.

Definitions (Sipser 7.1, 7.7, 7.12): For M a deterministic decider, its **running time** is the function $f : \mathbb{N} \to \mathbb{N}$ given by

 $f(n) = \max$ number of steps M takes before halting, over all inputs of length n

For each function t(n), the **time complexity class** TIME(t(n)), is defined by

 $TIME(t(n)) = \{L \mid L \text{ is decidable by a Turing machine with running time in } O(t(n))\}$

P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

$$P = \bigcup_{k} TIME(n^{k})$$

Definition (Sipser 7.9): For N a nondeterministic decider. The **running time** of N is the function $f : \mathbb{N} \to \mathbb{N}$ given by

 $f(n) = \max$ number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the **nondeterministic time complexity class** NTIME(t(n)), is defined by

 $NTIME(t(n)) = \{L \mid L \text{ is decidable by a nondeterministic Turing machine with running time in } O(t(n))\}$

$$NP = \bigcup_k NTIME(n^k)$$

True or False:
$$NTIME(n^2) \subseteq NTIME(n^2)$$

 $True or False: NTIME(n^2) \subseteq TIME(n^2)$
 $????$
 $????$
 $deterministic alg gives
 $Nondeterministic alg gives$
 $Nondeterministic alg gives
 $Nondeterministic alg gives$$$$$$$$$$$

Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check if it works.

Wednesday: P and NP

Examples in P

 $Can't \ use \ nondeterminism; \ Can \ use \ multiple \ tapes; \ Often \ need \ to \ be \ "more \ clever" \ than \ na\""ve \ / \ brute \ force \ approach$

 $PATH = \{ \langle G, s, t \rangle \mid G \text{ is digraph with } n \text{ nodes there is path from s to t} \}$

Use breadth first search to show in P

 $RELPRIME = \{ \langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$

Use Euclidean Algorithm to show in P

 $L(G) = \{ w \mid w \text{ is generated by } G \}$

(where G is a context-free grammar). Use dynamic programming to show in P.

Examples in NP

"Verifiable" i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

 $HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is digraph with } n \text{ nodes, there is path from } s \text{ to } t \text{ that goes through every node exa} VERTEX - COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph with } n \text{ nodes that has a } k\text{-node vertex cover}\}$

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with } n \text{ nodes that has a } k\text{-clique} \}$

 $SAT = \{ \langle X \rangle \mid X \text{ is a satisfiable Boolean formula with } n \text{ variables} \}$

$\mathbf{Problems in} \ P$	Problems in NP
(Membership in any) regular language	Any problem in P
(Membership in any) context-free language	
A_{DFA}	SAT
E_{DFA}	CLIQUE
EQ_{DFA}	VERTEX - COVER
PATH	HAMPATH
RELPRIME	

Notice: $NP \subseteq \{L \mid L \text{ is decidable}\}$ so $A_{TM} \notin NP$

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for *hardest* problems in NP and then (1) if we can show that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so P = NP, or (2) these problems might be good candidates for showing that there are problems in NP for which there are no efficient algorithms.

Definition (Sipser 7.29) Language A is **polynomial-time mapping reducible** to language B, written $A \leq_P B$, means there is a polynomial-time computable function $f : \Sigma^* \to \Sigma^*$ such that for every $x \in \Sigma^*$

$$x \in A$$
 iff $f(x) \in B$.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If $A \leq_P B$ and $B \in P$ then $A \in P$.

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin's work in the 1970s): A language B is **NP-complete** means (1) B is in NP **and** (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and $B \in P$ then P = NP.

Proof:

Friday: NP-Completeness

NP-Complete Problems

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. \bar{x}). A Boolean formula is a **3cnf-formula** if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses of literals) and each clause has three literals.

 $3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-formula} \}$

Example string in 3SAT

 $\langle (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (x \lor y \lor z) \rangle$

Example string not in 3SAT

 $\langle (x \lor y \lor z) \land (x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z}) \rangle$

Cook-Levin Theorem: 3SAT is NP-complete.

Are there other NP-complete problems? To prove that X is NP-complete

- From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.
- Using reduction: prove X is in NP and that a known-to-be NP-complete problem is polynomial-time reducible to X.

CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

 $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique} \}$

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):

$3SAT \leq_P CLIQUE$

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

- vertices for two literals in the same clause
- vertices for literals that are negations of one another

Example: $(x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor y \lor z) \land (x \lor y \lor z)$

Model of Computation	Class of Languages
Deterministic finite automata : formal definition, how to design for a given language, how to describe language of a machine? Nondeterministic finite au- tomata : formal definition, how to design for a given language, how to describe language of a machine? Reg- ular expressions : formal definition, how to design for a given language, how to describe language of expression? <i>Also</i> : converting between different models.	Class of regular languages: what are the clo- sure properties of this class? which languages are not in the class? using pumping lemma to prove nonregularity.
Push-down automata : formal definition, how to de- sign for a given language, how to describe language of a machine? Context-free grammars : formal definition, how to design for a given language, how to describe lan- guage of a grammar?	Class of context-free languages: what are the closure properties of this class? which languages are not in the class?
Turing machines that always halt in polynomial time	Р
Nondeterministic Turing machines that always halt in polynomial time	NP
Deciders (Turing machines that always halt): formal definition, how to design for a given language, how to describe language of a machine?	Class of decidable languages : what are the closure properties of this class? which languages are not in the class? using diagonalization and mapping reduction to show undecidability
Turing machines formal definition, how to design for a given language, how to describe language of a machine?	Class of recognizable languages : what are the closure properties of this class? which languages are not in the class? using closure and mapping reduction to show unrecognizability

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

"Prove it works" means ...

Example: $L = \{w \in \{0, 1\}^* \mid w \text{ has odd number of 1s or starts with 0} \}$ Using NFA

Using regular expressions

Example: Select all and only the options that result in a true statement: "To show a language A is not regular, we can..."

- a. Show A is finite
- b. Show there is a CFG generating A
- c. Show A has no pumping length
- d. Show A is undecidable

Example: What is the language generated by the CFG with rules

$$S \to aSb \mid bY \mid Ya$$
$$Y \to bY \mid Ya \mid \varepsilon$$

Example: Prove that the language $T = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is infinite} \}$ is undecidable.

Example: Prove that the class of decidable languages is closed under concatenation.

