
Week10

Week 10 at a glance

For Monday, Definition 7.1 (page 276).

For Wednesday, Definition 7.7 (page 279).

For Friday: skim through examples in Chapter 7.

We will be learning and practicing to:

• Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason
about computation and systems.

– Use mapping reduction to deduce the complexity of a language by comparing to the complexity
of another.

∗ Use appropriate reduction (e.g. mapping, Turing, polynomial-time) to deduce

the complexity of a language by comparing to the complexity of another.

∗ Use polynomial-time reduction to prove NP-completeness

– Classify the computational complexity of a set of strings by determining whether it is decidable
or undecidable and recognizable or unrecognizable.

∗ Distinguish between computability and complexity

∗ Articulate motivating questions of complexity

∗ Define NP-completeness

∗ Give examples of PTIME-decidable, NPTIME-decidable, and NP-complete prob-

lems

– Describe several variants of Turing machines and informally explain why they are equally ex-
pressive.

∗ Define nondeterministic Turing machines

∗ Use high-level descriptions to define and trace machines (Turing machines and

enumerators)

TODO:

Student Evaluations of Teaching forms: Evaluations are open for completion anytime BEFORE 8AM
on Saturday. Access your SETs from the Evaluations site

https://academicaffairs.ucsd.edu/Modules/Evals

You will separately evaluate each of your listed instructors for each enrolled course.

Review Quiz 9 on PrairieLearn (http://us.prairielearn.com), due 3/12/2025

Homework 6 submitted via Gradescope (https://www.gradescope.com/), due 3/13/2025

Project submitted via Gradescope (https://www.gradescope.com/), due 3/19/2025

CC BY-NC-SA 2.0 Version March 9, 2025 (1)

https://academicaffairs.ucsd.edu/Modules/Evals
https://creativecommons.org/licenses/by-nc-sa/2.0/

Summary from Week 9

Two models of computation are called equally expressive when every language recognizable with the first
model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it’s enough to construct
an example using any of the equally expressive models.

But: some of the performance properties of these models are not equivalent.

Monday: Church-Turing Thesis and Complexity

In practice, computers (and Turing machines) don’t have infinite tape, and we can’t a↵ord to wait un-
boundedly long for an answer. “Decidable” isn’t good enough - we want “E�ciently decidable”.

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the
running time depend on the input in the worst-case? average-case? We expect to have to spend more time
on computations with larger inputs.

A language is recognizable if

A language is decidable if

A language is e�ciently decidable if

A function is computable if

A function is e�ciently computable if

CC BY-NC-SA 2.0 Version March 9, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition (Sipser 7.1): For M a deterministic decider, its running time is the function f : N ! N given
by

f(n) = max number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note: TIME(1) ✓ TIME(n) ✓ TIME(n2)

Definition (Sipser 7.12) : P is the class of languages that are decidable in polynomial time on a deterministic
1-tape Turing machine

P =
[

k

TIME(nk)

Theorem (Sipser 7.8): Let t(n) be a function with t(n) � n. Then every t(n) time deterministic multitape
Turing machine has an equivalent O(t2(n)) time deterministic 1-tape Turing machine.

CC BY-NC-SA 2.0 Version March 9, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definitions (Sipser 7.1, 7.7, 7.12): For M a deterministic decider, its running time is the function f : N !
N given by

f(n) = max number of steps M takes before halting, over all inputs of length n

For each function t(n), the time complexity class TIME(t(n)), is defined by

TIME(t(n)) = {L | L is decidable by a Turing machine with running time in O(t(n))}

P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

P =
[

k

TIME(nk)

Definition (Sipser 7.9): ForN a nondeterministic decider. The running time ofN is the function f : N ! N
given by

f(n) = max number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the nondeterministic time complexity classNTIME(t(n)),
is defined by

NTIME(t(n)) = {L | L is decidable by a nondeterministic Turing machine with running time in O(t(n))}

NP =
[

k

NTIME(nk)

True or False: TIME(n2) ✓ NTIME(n2)

True or False: NTIME(n2) ✓ TIME(n2)

Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check
if it works.

CC BY-NC-SA 2.0 Version March 9, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Wednesday: P and NP

Examples in P

Can’t use nondeterminism; Can use multiple tapes; Often need to be “more clever” than näıve / brute force

approach

PATH = {hG, s, ti | G is digraph with n nodes there is path from s to t}

Use breadth first search to show in P

RELPRIME = {hx, yi | x and y are relatively prime integers}

Use Euclidean Algorithm to show in P

L(G) = {w | w is generated by G}

(where G is a context-free grammar). Use dynamic programming to show in P .

Examples in NP

“Verifiable” i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic

solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

HAMPATH = {hG, s, ti | G is digraph with n nodes, there is path from s to t that goes through every node exactly once}

V ERTEX � COV ER = {hG, ki | G is an undirected graph with n nodes that has a k-node vertex cover}

CLIQUE = {hG, ki | G is an undirected graph with n nodes that has a k-clique}

SAT = {hXi | X is a satisfiable Boolean formula with n variables}

Problems in P Problems in NP
(Membership in any) regular language Any problem in P

(Membership in any) context-free language
ADFA SAT
EDFA CLIQUE
EQDFA V ERTEX � COV ER
PATH HAMPATH

RELPRIME . . .
. . .

Notice: NP ✓ {L | L is decidable} so ATM /2 NP

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for hardest problems in NP and then (1) if we can show
that there are e�cient algorithms for them, then we can get e�cient algorithms for all problems in NP so
P = NP , or (2) these problems might be good candidates for showing that there are problems in NP for
which there are no e�cient algorithms.

CC BY-NC-SA 2.0 Version March 9, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Definition (Sipser 7.29) Language A is polynomial-time mapping reducible to language B, written
A P B, means there is a polynomial-time computable function f : ⌃⇤ ! ⌃⇤ such that for every x 2 ⌃⇤

x 2 A i↵ f(x) 2 B.

The function f is called the polynomial time reduction of A to B.

Theorem (Sipser 7.31): If A P B and B 2 P then A 2 P .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin’s work in the 1970s): A language B is
NP-complete means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

Theorem (Sipser 7.35): If B is NP-complete and B 2 P then P = NP .

Proof:

CC BY-NC-SA 2.0 Version March 9, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Friday: NP-Completeness

NP-Complete Problems

3SAT: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g. x̄). A Boolean formula is
a 3cnf-formula if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses
of literals) and each clause has three literals.

3SAT = {h�i | � is a satisfiable 3cnf-formula}

Example string in 3SAT
h(x _ ȳ _ z̄) ^ (x̄ _ y _ z) ^ (x _ y _ z)i

Example string not in 3SAT

h(x _ y _ z) ^ (x _ y _ z̄) ^ (x _ ȳ _ z) ^ (x _ ȳ _ z̄) ^ (x̄ _ y _ z) ^ (x̄ _ y _ z̄) ^ (x̄ _ ȳ _ z) ^ (x̄ _ ȳ _ z̄)i

Cook-Levin Theorem: 3SAT is NP -complete.

Are there other NP -complete problems? To prove that X is NP -complete

• From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.

• Using reduction: prove X is in NP and that a known-to-be NP -complete problem is polynomial-time
reducible to X.

CC BY-NC-SA 2.0 Version March 9, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

CLIQUE: A k-clique in an undirected graph is a maximally connected subgraph with k nodes.

CLIQUE = {hG, ki | G is an undirected graph with a k-clique}

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):
3SAT P CLIQUE

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will
map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does
not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

• vertices for two literals in the same clause

• vertices for literals that are negations of one another

Example: (x _ ȳ _ z̄) ^ (x̄ _ y _ z) ^ (x _ y _ z)

CC BY-NC-SA 2.0 Version March 9, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Model of Computation Class of Languages

Deterministic finite automata: formal definition,
how to design for a given language, how to describe
language of a machine? Nondeterministic finite au-

tomata: formal definition, how to design for a given
language, how to describe language of a machine? Reg-

ular expressions: formal definition, how to design for a
given language, how to describe language of expression?
Also: converting between di↵erent models.

Class of regular languages: what are the clo-
sure properties of this class? which languages are
not in the class? using pumping lemma to prove
nonregularity.

Push-down automata: formal definition, how to de-
sign for a given language, how to describe language of a
machine? Context-free grammars: formal definition,
how to design for a given language, how to describe lan-
guage of a grammar?

Class of context-free languages: what are the
closure properties of this class? which languages
are not in the class?

Turing machines that always halt in polynomial time P

Nondeterministic Turing machines that always halt in
polynomial time

NP

Deciders (Turing machines that always halt): formal
definition, how to design for a given language, how to
describe language of a machine?

Class of decidable languages: what are the
closure properties of this class? which languages
are not in the class? using diagonalization and
mapping reduction to show undecidability

Turing machines formal definition, how to design for a
given language, how to describe language of a machine?

Class of recognizable languages: what are the
closure properties of this class? which languages
are not in the class? using closure and mapping
reduction to show unrecognizability

CC BY-NC-SA 2.0 Version March 9, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Given a language, prove it is regular

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

“Prove it works” means . . .

Example: L = {w 2 {0, 1}⇤ | w has odd number of 1s or starts with 0}

Using NFA

Using regular expressions

CC BY-NC-SA 2.0 Version March 9, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Select all and only the options that result in a true statement: “To show a language A is not
regular, we can. . . ”

a. Show A is finite

b. Show there is a CFG generating A

c. Show A has no pumping length

d. Show A is undecidable

CC BY-NC-SA 2.0 Version March 9, 2025 (11)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: What is the language generated by the CFG with rules

S ! aSb | bY | Y a

Y ! bY | Y a | "

CC BY-NC-SA 2.0 Version March 9, 2025 (12)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the language T = {hMi | M is a Turing machine and L(M) is infinite} is undecid-
able.

CC BY-NC-SA 2.0 Version March 9, 2025 (13)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Example: Prove that the class of decidable languages is closed under concatenation.

CC BY-NC-SA 2.0 Version March 9, 2025 (14)

https://creativecommons.org/licenses/by-nc-sa/2.0/

CC BY-NC-SA 2.0 Version March 9, 2025 (15)

https://creativecommons.org/licenses/by-nc-sa/2.0/

