CSE 105 Discussion Week 1 Friday

<table>
<thead>
<tr>
<th>Definitions</th>
<th>Notes</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol is an element of the alphabet.</td>
<td>Symbols are single characters. Thus, $\varepsilon \notin \Sigma$.</td>
<td>a, b, c</td>
</tr>
<tr>
<td>Alphabet is a non-empty finite set of symbols.</td>
<td>Σ^* is the set of all strings over Σ.</td>
<td>$\Sigma = {a, b, c}$</td>
</tr>
<tr>
<td>String is a sequence of symbols.</td>
<td>A string over Σ has all its symbols in Σ.</td>
<td>Strings abc, abba, ε are over Σ.</td>
</tr>
<tr>
<td>A language over Σ is a set of strings over Σ.</td>
<td>Language over $\Sigma \subseteq \Sigma^*$.</td>
<td>{abc, abba, ε} is a language over Σ.</td>
</tr>
<tr>
<td>A regular expression over alphabet Σ is a syntactic expression</td>
<td>You can think of regex as sequences of symbols that specify a match</td>
<td>(ab)* (a \cup b)</td>
</tr>
<tr>
<td>that can describe a language over Σ.</td>
<td>pattern, except \emptyset and ε.</td>
<td></td>
</tr>
</tbody>
</table>

Regular Expressions:
- **Base Step**: ε, \emptyset, and a are regular expressions, where a is a symbol in Σ.
- **Recursive Step**: $(R_1 \cup R_2)$, $(R_1 \circ R_2)$, (R_1^*) are regular expressions, where R_1 and R_2 are regular expressions.

Language described by regular expression:
- $L(\varepsilon) = \{\varepsilon\}$
- $L(\emptyset) = \emptyset$
- $L(x) = \{x\}$, for any symbol x.
- $L(R_1 \cup R_2) = L(R_1) \cup L(R_2) = \{s \mid s \in L(R_1) \text{ or } s \in L(R_2)\}$
- $L(R_1 \circ R_2) = L(R_1) \circ L(R_2) = \{uv \mid u \in L(R_1) \text{ and } v \in L(R_2)\}$
- $L(R_1^*) = (L(R_1))^* = \{w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in L(R_1)\}$

Example:
- $L(ab^*) = \{a, ab, abb, abbb, \ldots \}$
- $L((ab)^*) = \{\varepsilon, ab, abab, ababab, \ldots \}$
1.1 M_1

![Diagram of M_1](image)

(a) Start state has an arrow pointing from nowhere to it.
 - M_1: \(q_1 \)
 - M_2: \(q_1 \)

(b) Accept states have double circles.
 - M_1: \{q_2, q_3\}
 - M_2: \{q_4\}

(c) Input is \(aabb \)
 - M_1: \(q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_1 \)
 - States: \(q_1, q_2, q_3, q_4, q_1 \) = Answer
 - M_2: \(q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_4 \)
 - States: \(q_1, q_1, q_1, q_2, q_4 \) = Answer

(d) The final state on M_1 is \(q_1 \), which is not an accept state. M_1 does not accept \(aabb \).

The final state on M_2 is \(q_4 \), which is an accept. M_2 does accept \(aabb \).

(e) M_1: No. The final state for empty string \(\epsilon \) is \(q_1 \), which is not an accept state.
 M_2: Yes. The final state for \(\epsilon \) is \(q_2 \), which is an accept state.
A finite automaton is a 5-tuple
\((Q, \Sigma, S, q_0, F)\), where
\(Q\) is states, \(\Sigma\) is alphabet,
\(S\) is transition function, \(q_0 \in Q\) is the
start state and \(F \subseteq Q\) is set of accept
states.

DFA \(\delta : Q \times \Sigma \rightarrow Q\),
NFA \(\delta : Q \times \Sigma \varepsilon \rightarrow P(Q)\),
where \(\Sigma \varepsilon = \Sigma \cup \{\varepsilon\}\),
\(P(Q)\) is power set of \(Q\)
(Non-determinism will be covered next week).

1.2 \(M_1 = (\{q_1, q_2, q_3, 3\}, \{a, b, 3\}, S_1, \)
\(q_1, \{q_1, q_2, q_3\}\), where

\[
\begin{array}{c|cc}
S_1 & a & b \\
\hline
q_1 & q_2 & q_1 \\
q_2 & q_3 & q_2 \\
q_3 & q_2 & q_1 \\
\end{array}
\]

\(M_2 = (\{q_1, q_2, q_3, q_4, q_4\}, \{a, b, 3\}, S_2, q_1, \{q_1, q_2, q_3, q_4\}\)

\[
\begin{array}{c|cc}
S_2 & a & b \\
\hline
q_1 & q_1 & q_2 \\
q_2 & q_3 & q_4 \\
q_3 & q_2 & q_1 \\
q_4 & q_3 & q_4 \\
\end{array}
\]
1.3 \[M = \{ \{q_1, q_2, q_3, q_4, q_5\}, S, q_3, \{q_3\}\} \]

\[
\begin{array}{|c|c|c|}
\hline
S & u & d \\
q_1 & q_1 & q_2 \\
q_2 & q_1 & q_3 \\
q_3 & q_2 & q_4 \\
q_4 & q_3 & q_5 \\
q_5 & q_4 & q_5 \\
\hline
\end{array}
\]

1.18 Let \(L_0 = \{ w \mid w \text{ begins with } 1 \text{ and ends with } 0^3 \} \)
\(\Sigma = \{0, 1\} \)

Let \(R = 1 \Sigma^* 0 \)

We want language over regular expression \(R \) to be the same as \(L_0 \).

\(L(R) = L_0 \)
\(L(R) = \{10, 100, 110, 1000, \ldots\} \)
(b) \[R = \Sigma^* \{ \Sigma^* | \Sigma^* \} \Sigma^* \]
\[L = \{ w \mid w \text{ contains at least three } 1s \} \]

(c) \[R = \Sigma^* 0101 \Sigma^* \]
\[L = \{ w \mid w \text{ contains substring } 0101 \} \]

(d) \[R = \Sigma \Sigma 0 \Sigma \]
\[L = \{ w \mid |w| \geq 3 \text{ and third symbol is } 0 \} \]

(e) \[L = \{ w \mid w \text{ doesn't contain the substring } 110^2 \} \]
\[R = \{ 0^* (10^+ \} \}^* \]

(Answer changed since discussion section)

(f) \[L = \{ w \mid w \text{ is any string except } \text{ and } \text{ and } \text{ and } \} \]
\[R = (\varepsilon \cup \{ 0 \} \cup \{ 1 \} \cup \{ 0 \} \Sigma^* \cup \{ 1 \} \Sigma^* \cup \{ 11 \} \Sigma^* \cup \{ 1 \} \Sigma^* \} \]

1.23 \[B^+ = BB^+ \text{ (Solution given back of the chapter)} \]

Case 1: Assume \(B = B^+ \)
\[B^+ = BB^+ \]
\[\Rightarrow BB \subseteq BB^+ = B^+ = B \]
\[\Rightarrow BB \subseteq B \]

\[\therefore B = B^+ \Rightarrow BB \subseteq B \]

Case 2: Assume \(BB \subseteq B \)
\[B \subseteq BB^* = B^+ \]
\[\Rightarrow B \subseteq B^+ \]
Suppose \(w \in B^+ \).
\[\exists x_1, x_2, \ldots, x_k \in B \text{ such that } \]
\[w = x_1 x_2 \ldots x_k, \text{ for some } k \geq 1. \]

\[x_1, x_2 \in B \]
\[\Rightarrow x_1 x_2 \in BB \]
\[\Rightarrow x_1 x_2 \in B \]

\[x_1 x_2, x_3 \in B \]
\[\Rightarrow x_1 x_2 x_3 \in BB \]
\[\Rightarrow x_1 x_2 x_3 \in B \]

\[\cdots \]
\[\Rightarrow w = x_1 x_2 \ldots x_k \in B \]

Thus, \(\forall w \in B^+, w \in B \)
\[\Rightarrow B^+ \subseteq B \]

\(B^+ \subseteq B \) and \(B \subseteq B^+ \)
\[\Rightarrow B^+ = B \]

Therefore, \(BB \leq B \Rightarrow B^+ = B \)

Proved. \(BB \leq B \) iff \(B^+ = B \)