
Week1

Let’s get started

We want you to be successful.

We will work together to build an environment in CSE 105 that supports your learning in a way that re-
spects your perspectives, experiences, and identities (including race, ethnicity, heritage, gender, sex, class,
sexuality, religion, ability, age, educational background, etc.). Our goal is for you to engage with interesting
and challenging concepts and feel comfortable exploring, asking questions, and thriving.

If you are skipping and stretching meals, or having di�culties a↵ording or accessing food, you may be
eligible for CalFresh, California’s Supplemental Nutrition Assistance Program, that can provide up to
$292 a month in free money on a debit card to buy food. Students can apply at benefitscal.com/r/
ucsandiegocalfresh. The Hub Basic Needs Center empowers all students by connecting them to resources
for food, stable housing and financial literacy. Visit their site at basicneeds.ucsd.edu.

Financial aid resources, the possibility of emergency grant funding, and o↵-campus housing referral resources
are available: see your College Dean of Student A↵airs.

If you find yourself in an uncomfortable situation, ask for help. We are committed to upholding Univer-
sity policies regarding nondiscrimination, sexual violence and sexual harassment. Here are some campus
contacts that could provide this help: Counseling and Psychological Services (CAPS) at 858 534-3755 or
http://caps.ucsd.edu; OPHD at 858 534-8298 or ophd@ucsd.edu , http://ophd.ucsd.edu; CARE at Sexual
Assault Resource Center at 858 534-5793 or sarc@ucsd.edu , http://care.ucsd.edu.

Please reach out (minnes@ucsd.edu) if you need support with extenuating circumstances a↵ecting CSE 105.

Introductions

Class website on Canvas https://canvas.ucsd.edu

Instructor: Prof. Mia Minnes ”Minnes” rhymes with Guinness, minnes@ucsd.edu, http://cseweb.ucsd.edu/ minnes

Our team: One instructor + two TAs and five tutors + all of you

Fill in contact info for students around you, if you’d like:

CC BY-NC-SA 2.0 Version January 4, 2025 (1)

http://caps.ucsd.edu
http://ophd.ucsd.edu
http://care.ucsd.edu
https://canvas.ucsd.edu/
http://cseweb.ucsd.edu/~minnes
https://creativecommons.org/licenses/by-nc-sa/2.0/

Welcome to CSE 105: Introduction to Theory of Computation in Winter 2025!

CSE 105’s Big Questions

• What problems are computers capable of solving?

• What resources are needed to solve a problem?

• Are some problems harder than others?

In this context, a problem is defined as: “Making a decision or computing a value based on some input”

Consider the following problems:

• Find a file on your computer

• Determine if your code will compile

• Find a run-time error in your code

• Certify that your system is un-hackable

Which of these is hardest?

In Computer Science, we operationalize “hardest” as “requires most resources”, where resources might be
memory, time, parallelism, randomness, power, etc.

To be able to compare “hardness” of problems, we use a consistent description of problems

Input: String

Output: Yes/ No, where Yes means that the input string matches the pattern or property described by
the problem.

CC BY-NC-SA 2.0 Version January 4, 2025 (2)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Weeks 0 and 1 at a glance

Textbook reading: Chapter 0, Sections 1.3, 1.1

Before Monday, review class syllabus on Canvas (https://canvas.ucsd.edu/).

Before Wednesday, read Example 1.51.

Notice: we are jumping to Section 1.3 and then will come back to Section 1.1 next week.

Before Friday, read Definition 1.52 (definition of regular expressions) on page 64.

For Week 2 Monday: Figure 1.4 and Definition 1.5 (definition of finite automata) on pages 34-35.

Textbook references: Within a chapter, each item is numbered consecutively. Example 1.51 is the fifty-first
numbered item in chapter one.

We will be learning and practicing to:

• Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate
across levels of abstraction.

– Translate a decision problem to a set of strings coding the problem.

∗ Distinguish between alphabet, language, sets, and strings

– Use regular expressions and relate them to languages and automata.

∗ Write and debug regular expressions using correct syntax

∗ Determine if a given string is in the language described by a regular expression

TODO:

#FinAid Assignment on Canvas (complete as soon as possible) and read syllabus on Canvas

Schedule your Test 1 Attempt 1, Test 2 Attempt 1, Test 1 Attempt 2, and Test 2 Attempt 2 times at
PrairieTest (http://us.prairietest.com)

Review Quiz 1 on PrairieLearn (http://us.prairielearn.com), complete by 1/15/25

Create a homework group, possibly by using the Piazza (https://piazza.com/) find-a-teammate tool

Homework 1 submitted via Gradescope (https://www.gradescope.com/), due 1/16/25

CC BY-NC-SA 2.0 Version January 4, 2025 (3)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Monday: Terminology and Notation

The CSE 105 vocabulary and notation build on discrete math and introduction to proofs classes. Some of
the conventions may be a bit di↵erent from what you saw before so we’ll draw your attention to them.

For consistency, we will use the notation from this class’ textbook1.

These definitions are on pages 3, 4, 6, 13, 14, 53.

Term Typical symbol Meaning

or Notation

Alphabet ⌃, � A non-empty finite set
Symbol over ⌃ �, b, x An element of the alphabet ⌃
String over ⌃ u, v, w A finite list of symbols from ⌃
(The) empty string " The (only) string of length 0
The set of all strings over ⌃ ⌃⇤ The collection of all possible strings formed from

symbols from ⌃
(Some) language over ⌃ L (Some) set of strings over ⌃
(The) empty language ; The empty set, i.e. the set that has no strings

(and no other elements either)

The power set of a set X P(X) The set of all subsets of X
(The set of) natural numbers N The set of positive integers
(Some) finite set The empty set or a set whose distinct elements

can be counted by a natural number
(Some) infinite set A set that is not finite.

Reverse of a string w wR write w in the opposite order, if w = w1 · · ·wn

then wR = wn · · ·w1. Note: "R = "
Concatenating strings x and y xy take x = x1 · · · xm, y = y1 · · · yn and form xy =

x1 · · · xmy1 · · · yn
String z is a substring of string w there are strings u, v such that w = uzv
String x is a prefix of string y there is a string z such that y = xz
String x is a proper prefix of string y x is a prefix of y and x 6= y

Shortlex order, also known as string
order over alphabet ⌃

Order strings over ⌃ first by length and then ac-
cording to the dictionary order, assuming symbols
in ⌃ have an ordering

1Page references are to the 3rd edition of Sipser’s Introduction to the Theory of Computation, available through various
sources for approximately $30. You may be able to opt in to purchase a digital copy through Canvas. Copies of the book are
also available for those who can’t access the book to borrow from the course instructor, while supplies last (minnes@ucsd.edu)

CC BY-NC-SA 2.0 Version January 4, 2025 (4)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Write out in words the meaning of the symbols below:

{a, b, c}

|{a, b, a}| = 2

|aba| = 3

Circle the correct choice:

A string over an alphabet ⌃ is an element of ⌃⇤ OR a subset of ⌃⇤.

A language over an alphabet ⌃ is an element of ⌃⇤ OR a subset of ⌃⇤.

With ⌃1 = {0, 1} and ⌃2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} and � = {0, 1, x, y, z}

True or False: " 2 ⌃1

True or False: " is a string over ⌃1

True or False: " is a language over ⌃1

True or False: " is a prefix of some string over ⌃1

True or False: There is a string over ⌃1 that is a proper prefix of "

The first five strings over ⌃1 in string order, using the ordering 0 < 1:

The first five strings over ⌃2 in string order, using the usual alphabetical ordering for single letters:

CC BY-NC-SA 2.0 Version January 4, 2025 (5)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Wednesday: Regular expressions

Our motivation in studying sets of strings is that they can be used to encode problems. To calibrate how
di�cult a problem is to solve, we describe how complicated the set of strings that encodes it is. How do we
define sets of strings?

How would you describe the language that has no elements at all?

How would you describe the language that has all strings over {0, 1} as its elements?

CC BY-NC-SA 2.0 Version January 4, 2025 (6)

https://creativecommons.org/licenses/by-nc-sa/2.0/

This definition was in the pre-class reading Definition 1.52: A regular expression over alphabet ⌃
is a syntactic expression that can describe a language over ⌃. The collection of all regular expressions over
⌃ is defined recursively:

Basis steps of recursive definition

a is a regular expression, for a 2 ⌃

" is a regular expression

; is a regular expression

Recursive steps of recursive definition

(R1 [R2) is a regular expression when R1, R2 are regular expressions

(R1 �R2) is a regular expression when R1, R2 are regular expressions

(R⇤
1) is a regular expression when R1 is a regular expression

The semantics (or meaning) of the syntactic regular expression is the language described by the regular

expression. The function that assigns a language to a regular expression over ⌃ is defined recursively,
using familiar set operations:

Basis steps of recursive definition

The language described by a, for a 2 ⌃, is {a} and we write L(a) = {a}
The language described by " is {"} and we write L(") = {"}
The language described by ; is {} and we write L(;) = ;.

Recursive steps of recursive definition

When R1, R2 are regular expressions, the language described by the regular expression
(R1 [R2) is the union of the languages described by R1 and R2, and we write

L((R1 [R2)) = L(R1) [L(R2) = {w | w 2 L(R1) _ w 2 L(R2)}

When R1, R2 are regular expressions, the language described by the regular expression
(R1 �R2) is the concatenation of the languages described by R1 and R2, and we write

L((R1 �R2)) = L(R1) � L(R2) = {uv | u 2 L(R1) ^ v 2 L(R2)}

When R1 is a regular expression, the language described by the regular expression (R⇤
1) is

the Kleene star of the language described by R1 and we write

L((R⇤
1)) = (L(R1))

⇤ = {w1 · · ·wk | k � 0 and each wi 2 L(R1)}

CC BY-NC-SA 2.0 Version January 4, 2025 (7)

https://creativecommons.org/licenses/by-nc-sa/2.0/

For the following examples assume the alphabet is ⌃1 = {0, 1}:

The language described by the regular expression 0 is L(0) = {0}

The language described by the regular expression 1 is L(1) = {1}

The language described by the regular expression " is L(") = {"}

The language described by the regular expression ; is L(;) = ;

The language described by the regular expression 1⇤ � 1 is L(1⇤ � 1) =

The language described by the regular expression ((0[1)�(0[1)�(0[1))⇤ is L(((0[1)�(0[1)�(0[1))⇤) =

CC BY-NC-SA 2.0 Version January 4, 2025 (8)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Week 1 Friday: Regular expressions conventions

Review: Determine whether each statement below about regular expressions over the alphabet {a, b, c} is
true or false:

True or False: ab 2 L((a [b)⇤)

True or False: ba 2 L(a⇤b⇤)

True or False: " 2 L(a [b [c)

True or False: " 2 L((a [b)⇤)

True or False: " 2 L(aa⇤ [bb⇤)

Shorthand and conventions (Sipser pages 63-65)

Assuming ⌃ is the alphabet, we use the following conventions

⌃ regular expression describing language consisting of all strings of length 1 over ⌃
⇤ then � then [precedence order, unless parentheses are used to change it
R1R2 shorthand for R1 �R2 (concatenation symbol is implicit)
R+ shorthand for R⇤ �R
Rk shorthand for R concatenated with itself k times, where k is a (specific) natural number

Caution: many programming languages that support regular expressions build in functionality

that is more powerful than the “pure” definition of regular expressions given here.

Regular expressions are everywhere (once you start looking for them).

Software tools and languages often have built-in support for regular expressions to describe patterns that
we want to match (e.g. Excel/ Sheets, grep, Perl, python, Java, Ruby).

Under the hood, the first phase of compilers is to transform the strings we write in code to tokens
(keywords, operators, identifiers, literals). Compilers use regular expressions to describe the sets of strings
that can be used for each token type.

Next time: we’ll start to see how to build machines that decide whether strings match the pattern described
by a regular expression.

CC BY-NC-SA 2.0 Version January 4, 2025 (9)

https://creativecommons.org/licenses/by-nc-sa/2.0/

Practice with the regular expressions over {a, b} below.

For example: Which regular expression(s) below describe a language that includes the string a as an
element?

a⇤b⇤

a(ba)⇤b

a⇤ [b⇤

(aaa)⇤

(" [a)b

CC BY-NC-SA 2.0 Version January 4, 2025 (10)

https://creativecommons.org/licenses/by-nc-sa/2.0/

